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INTRODUCTION



Introducing your presenters

« James Roger
* Chrissie Fletcher

 Neil Hawkins



Introducing yourselves...

- What experience, if any, do you have relating to
network meta-analysis?

- What are you hoping to get out of this course?



Course Objectives

1.

Understand what is a network meta-analysis and
associated terminology

Understand the methodology and assumptions used in a
NMA

Understand how to plan, conduct, report and interpret a
NMA

Gain some hands on experience of fitting an NMA
Understand how NMAs are used in drug development

Understand what reimbursement agencies think about
NMAS

Know where to look to find more information



Structure of agenda — Day 1

Introduction and course objectives
What is an NMA and why is NMA important?

Definitions

Assumptions

Steps involved in an NMA
« Workshop
« Case study

NMA methodology

« How to conduct NMA for different types of endpoints
* continuous

« Frequentist vs Bayesian

« Workshop



Structure of agenda — Day 2

 NMA methodology cont.

- How to conduct NMA for different types of endpoints
 Binary, count, hazard ratios etc

« Workshop
* New NMA techniques

* Applications of NMA
 Industry perspective: drug development
« Academic/payer perspective: evidence based medicine
« Workshop

 NMA in HTA methodology guidelines
* NMA best practices

- Conclusions & wrap-up



WHAT IS AN NMA?



Lots of different terminology used

* Indirect comparison

* Indirect treatment comparison

« Adjusted indirect comparison

« Adjusted indirect treatment comparison
* Mixed treatment comparison

* Network meta-analysis



Definitions

Indirect (Treatment) Comparison

A comparison of treatments that have not been compared
‘head-to-head’ in a randomised controlled trial (RCT)

Adjusted Indirect (Treatment) Comparison

A comparison of the relative treatment effects using a
common comparator

[These may often be referred to as an Indirect (treatment)
comparison]



Definitions

Mixed treatment comparison

Combining treatment effects obtained from direct (head to
head) RCTs with indirect estimates of treatment effects

Network meta-analysis

Allowing multiple pairwise comparisons for many
treatments to be estimated simultaneously to provide
relative treatment effects of multiple treatment
comparisons



Direct Comparison

e One or more RCTs

« Meta-analysis of AvB trials to gain
better estimate of the overall
treatment difference

« Usual issues with meta-analysis
apply
* Publication Bias
* Heterogeneity




Indirect Comparison

* Indirect comparison of AvB is

obtained from meta-analysis of
AvC trials and meta-analysis of

BvC trials

Indirect (5,.,) = d,c — Oc
or, Indirect (5,,) = 0,./0pc

« Two sets of meta-analysis
assumptions

- Extra assumptions are involved



Network Meta Analysis

«  Mixture of direct and indirect

comparisons from meta-
analyses of RCTs

* Three sets of meta-analysis
assumptions

- Additional assumptions




ISPOR Indirect Treatment Comparison
Good Research Practices report (part 1)*
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* http://www.ispor.org/workpaper/interpreting-indirect-treatment-comparison-and-network-meta-analysis-studies-for-decision-making.pdf
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Other NMA Definitions - EUnetHTA

Direct comparison — the combination of multiple head-to-head trials to generate a pooled estimate of the
relative effectiveness of the two treatments

Indirect comparison — the estimation of the relative effectiveness of two or more treatments in the absence of
any head-to-head trials

Multiple treatment comparison — the estimation of the relative effectiveness ofthree or more treatments

Mixed treatment comparison — the simultaneous estimation of the relative effectiveness of three or more
treatments using a combination of direct and indirect evidence

To compare two or more treatments, meta-analytic techniques are generally used to combine the results of
multiple studies in an attempt to provide the best evidence base. A meta-analysis is the formal evaluation of
the quantitative evidence from two or more studies addressing the same question. This most commonly
involves the statistical combination of summary statistics from the various studies, but the term is sometimes
also used to refer to the combination of raw data. Direct comparisons enable evidence synthesis based on
multiple head-to-head trials. Where direct head-to-head evidence is lacking, indirect evidence can be used to
supplement the relative effectiveness data from the direct comparisons available.

EUnetHTA relative effectiveness guidelines (released Mar 2013):
http://www.eunethta.eu/outputs/methodological-guideline-rea-pharmaceuticals-direct-and-indirect-comparison
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ASSUMPTIONS



Assumptions

« Exchangeability

* This is the assumption that the direct effects , 8,,;, are

exchangeable with all the other treatment effects in the AvP
trials

Sap() ~ N(8ap, G%4p)

ap(i)

* If this can be assumed then different contrasts of treatments
that give indirect effects are also exchangeable

8ab(i) ~ N(8,p, 6%ap)

* Difficult to assess directly

11



Assumptions

« Homogeneity

For each pair-wise comparison, are trials clinically and
statistically comparable

Heterogeneity can be present in the individual meta-analyses
that comprise the dataset for an NMA

Heterogeneity could be explained by adjusting for study level
baseline characteristics.

The influence of heterogeneity can be mitigated by using a
random effects modelling approach (standard approach)

Can also be mitigated by moving from a ‘difference’ treatment
estimate to a ‘ratio’ estimate

12



Assumptions

«  Similarity
« The assumption that an indirect comparison does not differ by
patient subgroups

« Thorough exploration of patient subgroup is required to show
that indirect comparison estimates are not different among
subgroups, or influenced by outlier studies.

« Use of meta-regression techniques

« Important to show that indirect comparisons are not influenced
by study level patient characteristics

13



Assumptions

« Consistency

The assumption that the indirect evidence is consistent with any
direct evidence

This can be explored by comparing the discrepancy between direct
and indirect estimates

discrepancy m,, = 8dr_, — &nd_

For comparison of AvB, the estimate based on only the direct
evidence is compared to the estimate obtained from the NMA
excluding the direct AvB evidence. This can be done for each
comparison in the NMA.

DIC is used to detect inconsistencies
See also Dias et al (2010) and NICE DSU Report 4

14



EXAMPLES OF NMAS



Romiplostim ........................................................................................ Eltrombopag

2 Trials 1 Trial

Placebo

---------- Indirect analysis Head-to-head study

Cooper KL et al. Immune Thrombocytopenia. Int J Technol Assess Health Care. 2012;28:249-258
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Alendronate

Strontlum ........................... ....:?: Denosw

Raloxifene Risedronate

1 Trial

SN 2Tmas ATvials| . .

Teriparatide Etidronate
~ |3 Trials - Trlals/
1 Trial 2 Trials .

w 1 Trial &ebo/ 1 Trial Ibandronate

---------- Indirect analysis Head-to-head study

Freemantle et al. Osteoporosis, International Osteoporosis Foundation and National Osteoporosis Foundation. 2012

17



i
5-
i
2
=]

Fiqure 1 Network diagram of availbledirect comparisons. The numbers at the lires indicate the numberof trials foreach direc t comparison, DMARD,
disease-modifying antirheumatic drug; MTX, methotrexate,

Mandema. A Dose—-Response Meta-Analysis for Quantifying Relative Efficacy of Biologics in Rheumatoid Arthritis

18



Treatment 4

Treatment 2 // 1 Z\ 5
2t N\

2 Treatment 5

Placebo
(Treatment 1)
Treatment 3

Figure 3 Parkinson network: each edge represents a treatment, connecting lines indicate pairs of
treatments which have been directly compared in randomised trials. The numbers on the lines indicate

the numbers of trials making that comparison.

NICE Decision Support Unit Technical Series Document 1 Introduction to evidence synthesis for decision making

19


http://www.nicedsu.org.uk/TSD1 Introduction_final_03_02_12.pdf

Figure 5. Randomized controlled trial (RCT) networks. OS: Overall survival; SREs: Skeletal-related events;
PFS: Progression-free survival.

RCT network: SRES

Cochrane (2012) : Bisphosphonates in multiple myeloma: a network metaanalysis (Review) 20



WHY IS NMA IMPORTANT?



Rationale for network meta-analyses

 Increasingly many organizations are comparing new
treatments against existing therapies by using network
meta analysis techniques

* Questions concerning the comparative effectiveness
(US) or the relative effectiveness (EU) of a new
treatment receiving regulatory approval are being raised
by numerous healthcare, clinical and government
stakeholders.

EUnetHTA - European network for Health Technology Assessment

AHRQ .
-~ \ 3 eu nethta HOME ABOUT ACTIVITIES NEWS EVENTS OUTPUT COLLABORATIONS GETINVOLVED CONTACTUS
Agency for Healthcare Research and Quality
Advancing Excellence in Health Care
A > Home » Outputs
E El:l:ed.lve HeC'lI.h CU re PI’Og ram THE POP DATABASE HTA CORE MODEL® EVIDENT DATABASE
The EUnetHTA Planned and Ongoing Projects 3 C se =

framework for shared production and sharing




Relative Effectiveness/Efficacy
HLPF & EFPIA Definition

 Referred to as Relative effectiveness*

o Relative Effectiveness can be defined as the extent to which an
Intervention does more good than harm compared to one or
more intervention alternatives for achieving the desired results
when provided under the usual circumstances of health care
practice

o Different than Relative Efficacy*

e Relative Efficacy can be defined as the extent to which an
Intervention does more good than harm, under ideal
circumstances, compared to one or more alternative
Interventions

* Adopted by High Level Pharmaceutical Forum
23



Comparative Effectiveness (CE) — US
Definition

o Comparative Effectiveness Research* is the conduct and synthesis
of systematic research comparing different interventions and
strategies to prevent, diagnose, treat and monitor health conditions.

e The purpose of this research is to inform patients, providers, and
decision-makers, responding to their expressed needs, about which
interventions are most effective for which patients under specific
circumstances.

e To provide this information, comparative effectiveness research must
assess a comprehensive array of health-related outcomes for diverse
patient populations.

e Defined interventions compared may include medications, procedures,
medical and assistive devices and technologies, behavioural change
strategies, and delivery system interventions.

e This research necessitates the development, expansion, and use of a
variety of data sources and methods to assess comparative
effectiveness.

* US Dept of Health

24



Current paradigm

| Regulators [

MA

Payers

« Quality, safety,
efficacy
(first 3 hurdles)

» Benefit—risk profile

Evidence needs for regulators and payers

Future paradigm?
MA
[ |

4 £

Regulators

>

s Relative efficacy/
effectiveness

« Cost versus health
benefit,

» Budget impact
(4th hurdle)

E Dedicated relative efficacy/ i

| effectiveness assessment? |

« Quality, safety,
efficacy
« Benefit—risk profile

= Cost versus
health benefit,
« Budget impact

« Relative efficacy/effectiveness

» Emphasis on RCT,
most often
placebo-controlled

+ Active-controlled RCT

» Observational studies

= Cost-effectiveness/
utility analyses

« Budget impact analysis

]
[ |
« Emphasis on RCT, E « Cost-effectiveness/

most often - utility analyses,
active- and = | » Budget impact
placebo-controlled | & | analysis

[ |

[ |

B Assessors

[ Assessment focus

[ studies/data

Eichler et al, Nature Reviews 2010

» Active-controlled RCT

« Adaptive Phase llI-IV trials
+ Observational studies

« Meta-analysis

25



Areas of mutual interest between
regulators and payers

« Exchange of information

- Parallel scientific advice

* Debate on evidence requirements

* Relative efficacy assessment

» Alignment on post-marketing research activities
- Parallel review

* Managed market entry (provisional/progressive
decisions)

EMA Eichler EU DIA 2011

26
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Edit View Favorites

Tools  Help

] Amgen Corporate Directory a Amgen Home Page a Amgen Meetingstation a Amgen Printstation a 15 One-Click Software Inst... a 15 Service Desk

>
i

Home Find medicine Regulatory Special topics Document search Partners & networks £

P Home P Mews and Events P Mews and press release archive

News and press

release archive

European Medicines Agency and EUnetHTA review

Committee meeting progress of their cooperation
reports
Calendar Press release

Statistics

What's new

Media centre

Brochures

RSS feeds

Mewsletters

Social media

EMA website:

07/06/2013

European Medicines Agency and EUnetHTA review progress of
their cooperation

Focus on facilitation of development plans through advice procedures

The European Medicines Agency (EMA) and EUnetHTA, the European Network for Health
Technology Assessment, met to review the progress of their cooperation in London on
14 May 2013. This was the sixth meeting since the start of their collaboration in 2010.

The focus of this meeting was on how regulators and health-technology-assessment
(HTA) bodies can work together to facilitate drug development by cooperating in giving
advice to pharmaceutical companies. EUnetHTA is piloting joint early dialogue with

http://www.ema.europa.eu/emal/index.isp?curl=pages/news and events/news/2013/06/news detail 001807.jsp&mid=WC0b01ac058004d5c1
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NMA is increasingly accepted by more HTA
agencies

 Time to market has become time to reimbursement and
not time to regulatory approval

« NMA becoming critical as part of evidence synthesis
and demonstrating how a new treatment compares to
existing therapies used in local medical practice to
support a local HTA at product launch

* Increasing exchange of scientific information between
European HTA networks (EUnetHTA) and payers within
member states on evidence to support health care
decisions

* Methodology has evolved and NMA becoming more
accessible and accepted where gaps in evidence exist

28



Summary from HTA agency
methodology guidelines

* NMAs should only be conducted when RCTs don't exist
* Less weight is given to a NMA compared to RCTs
* Observational data should not be used in a NMA

* Most note that a NMA has relatively low power to detect
Important differences

« All HTA bodies comment on the underlying assumption
that a NMA is only valid if the contributing RCTs are
similar

29



Introducing the IMI* ‘GetReal’ project

iy’ GetReal

Project Vision

For Pharmaceutical R&D and healthcare
system decision makers to jointly
understand how real world data and
analytical technigues can best be used to
improve the value of information availakble
at marketing authorisation: contributing to
better informed and more consistent
assessTents underpinning patient access to
new medicines.

Lasting impact

Innovative Medicines Initiative

Toprovide a methodological and
analytical framework that informs policy
and process evolution beyond the life

of the project and at an international
level; and to provide tools, technigues
and training that ensure that the
potential of real world data can be
exploited in drug development.

30




IMI GetReal: Project deliverables and benefits

Frameworks developed jointly by Regulatory, HTA and Industry experts for use in:

R&D strategy development, study design (comparators, endpoints, patients, care protocal)
Early Scientific Advice
HTA reviews of evidence base

Practical solutions: enable implementation of studies of greater value for RE assessment
— Translation from theory to practice

Regulatory and ethical reviews
Infrastructure and capability requirements / training & education

Advances in methodology to reliably predict effectiveness from available data

Support extrapolation from optimised Pllla studies
Increase acceptability of innovative Plllb study data in evidence synthesis
Define the focus for post launch commitments

Aligning innovation in evidence generation with evolution of regulatory & HTA processes

Understand how to evolve processes in a coordinated way without unnecessarily raisng burden
of evidencegeneration
Signalfavoid unintended consequences

Share insights and seek alignment with initiatives cutside EU
31



Relationship between the WPs

Choice of
comparator

Drivers of
relative
effectiveness

[nnowvative

Development
options /
study designs

llla options f
study designs

Predictive

WES

power f
residual
uncertainty

WPE1

Frameworks
of relative
effectiveness
assessment

Acceptable
uncertainty?

Operational
feasibility /
solutions

Ethics &
Regulations

International

Reg +HTA Reg & HTA
Process ol
Sirmulations ol
implications
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Developing a predictive model for
relative effectiveness (WP4)

Flow of work Tasks

ra L

Internal validity *  External validity

RCTs Pragmatic Cohort Clinical 1] entify sulltahle
[phase Il RCTs studies databases case-studies

|
L
/_4 - J \"-—,1 2] Assess patientcharacteristics

Jg’{ andrisk of bias
—-—

Assessment of studies and re-analysis g‘?
where applicable ‘,*,- 3) Re-analyze individual patient

data if available

4] Obtain best estimates of RE
for different patient groups

Network meta-
analysis and meta-
regressicn analysis

f

e —
.
Statistical
pat kase ¥

athematical
simulation model

5] Fredict RE and absolute
benefits and harmsin
different patient groups

L

G uidante ard recommendations

B) Develop user-friendly
software

Ltatistical
patkage

Cata management, analysis and decision support software

7] Develop guidance and
recommendations

[
|
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STEPS INVOLVED IN AN NMA



Steps for conducting NMA




Step 1. Research project plan

* Objectives

* Populations

* Endpoints

« Comparators

* Any subgroups/sub-populations of interest
» Define systematic review (protocol)

* Analysis methods

* Limitations and biases



Workshop 1: NMA Challenges

« What are the challenges in conducting a NMA?



Analysis methods: considering
sources of heterogeneity

« Differencesin inclusion/exclusion criteria or baseline characteristics

« Variabllity in control and treatment
- Examples include dose, timing, brand

« Broadervariability in management
- Examples include care setting, co-medication, intermediate
outcomes/crossovers, wash-in/out, compliance
« Differencesin outcome measures
- Examples include follow-up times, outcome definitions
« Variationin analysis
- Examples include withdrawals, drop-outs, stopping rules, cross-overs
« Quality in design and execution, with bias or imprecision

NICE Technical Series Documents 2011 http://www.nicedsu.orqfljk/Evidence—Svnthesis—TSD—series(2391675).htm
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Step 2. Systematic review

Databases
Search criteria
Inclusion/exclusion criteria
- Study identification
Extraction and analysis

Searches

Review

Extraction

* May be conducted by external vendor 6



Step 3. Analysis —understanding
evidence

Understand scope of clinical package

Critically assess the data
 Clinical and statistical sources of heterogeneity

How much direct (head to head) data is available?
Define what “common comparators” exist

What indirect comparisons/mixed treatment comparisons
can be assessed?

Develop network diagram / treatment comparison grid



Step 3. Analysis —conduct planned
analysis

- Summarise direct head to head comparisons using meta-
analysis

 Conduct NMA

* Investigate heterogeneity and inconsistent treatment
effects (exchangeability assumption)

» Conduct meta-regression analyses to explore important
prognostic variables and extensive sensitivity analyses

» Assess the statistical heterogeneity



Step 4. Reporting

Summarise the evidence package
« Sources of clinical and statistical heterogeneity

* Present summaries (tables, graphs) of head to head
data, indirect comparisons and mixed treatment
comparisons

* Provide interpretation of results
» Describe extent of heterogeneity

« Describe limitations and potential biases

Interpreting Indirect Treatment Comparisons and Network Meta-Analysis for Health-Care Decision Making: Report of the

ISPOR Task Force on Indirect Treatment Comparison Good Research Practices: Part 1
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NMA CASE STUDY - IMMUNE
THROMBOCYTOPENIA~

* Funded by Amgen



Infe rnational Journal of Techo bogy fssessment in Health Care, 28:3 (2012), 249258,
@ Cambrdge Universty Press 2011
101017 02445231 000414

ROMIPLOSTIM AND ELTROMBOPAG FOR
IMMUNE THROMBOCYTOPENIA: METHODS
FOR INDIRECT COMPARISON

Kty L. Cooper Kerry Dillingham, Kewitha Helme
ermailc & Liaoper@isheffishl ook Aragen Lirmitad
Putrick Fitzgerald Ron Akehurst
Hriversity of Sheffel Kniversity of Sheffiald

Ohjectives: Immune thiombocytape nia (ITF) cawses i recsed platelet destruction and suboptiral platelet production, increasing risk of bleeding. This anabysis wses o Boyesion metregression model
tor indlirecthy compare effectheness of the thiombopaletin mimetics mmipkstim and eftombopag for inceasing pltekt counts, and contiasts the results with those of non-Bayesian approaches.
Methods: Ten datobases were sear bed during 2010, Plcbecontiolled triok of 24 weeks” duration were included, An indirect comparison wis undertoken using Bayesion metoregression, which
incluces all trials ina single rmodel. This wis compared with previous analyses inw hich data for eoch inte vertion were combined wsing simple pooling, logistic regression or metnanalyst, followsd by
indirect comparison of pooled walues using the Bucher method.

Results: Two triols of omiplostimand ore of eltnmbo pog were included. The indirct evidence suggests omiplastim significantly improves evell platelet res ponse compared with eftombopag.
Byesian mefaregession oove an odds iatio COR) for et ormbopog versus romiplostim of 0,11 (95 perent credibke intenal 0.02=0.88) 7 pvalues and Bayesian posterior probabilities manged fiom
(.01 to 0,05 for all anabyses. The e was no significant difference in dumble plotelet res ponse inany of the analyses, although the direction of effect fovored omiplostim (0R = 0.15; 95 perent
tredible interal, 0.01=1.88)2 pvalies and Boyesian posterior probabilities mnged fram 0,08 to 0.40 aciss anabesss. Results were reiothely consistent betwesn analy sss.

Conclusions: Boyesion metaregmession genemted simiar msults to other indiect comparson methods, and may be corsidered the mest obust o5 it incorpo ites all datn in o single mods! and accounts
appropriately for parmeter uncerainty .

Keywords: Idiopathic. thiombeciytopsnic purpur, Romiplestim, Efombopan, Stattstis as topic, Review, Systematic

Imrmine(idiopathic) thrormboceytopenia (ITP) is an antoirrmine  {(21). Following splenectony, approximately two-thirds of pa-
condition characterized by increased platelet destruction and  tients achieve sustained response for af least 5 years, with others
suboptimal platelet production, resulting in low platelet counts  having partial ortransient responses. Approximately 14 percent
(thrombocytopenia) (21, Patients experience bleeding-related do nct respond, while 20 percent of responders later relapze.
syrptorms ranging from minor bruising to severe gastrointesti-  Cornplications of splenectonty include surgical morbidity and
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Aims and objectives

» To validate the results of previous indirect comparisons
of romiplostim and eltrombopag supporting HTAS
(NICE)

* To explore additional statistical methods for the indirect
comparison of romiplostim and eltrombopag:

 In particular, determine statistical methods that allow more
robust consideration of parameter uncertainty (that is,
heterogeneity between studies) for indirect comparison

12



Methods

* Inclusion criteria:

> * RCTs comparing romiplostim or eltrombopag vs placebo for
management of ITP

* Inclusion criteria;

— * Treatment duration 224 weeks and double-blind
* Reported data included platelet response




Network diagram

ROMIPIOSEIM  Jrooereerremneessreermmmennettiinn ettt ettt Eltrombopag

2 Trials 1 Trial

Head-to-head study

---------- Indirect analysis
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Basis for Indirect Comparison

Eltrombopag

Placebo

Overall response

Romiplostim

Placebo

Non-splenectomised

51/85 (60%)

5/41 (12%)

36/41 (88%)

3/21 (14%)

Splenectomised

26/50 (52%)

2/21 (10%)

33/42 (79%)

0/21 (0%)

Overall

771135 (57%)

7162 (11%)

69/83 (83%)

3142 (7%)

Dura

ble response

Non-splenectomised

38/85 (45%)

3/41 (7%)

25/41 (61%)

1/21 (5%)

Splenectomised

19/50 (38%)

1/21 (5%)

16/42 (38%)

0/21 (0%)

Overall

57/135 (42%)

4162 (6%)

41/83 (49%)

1/42 (2%)

15




Definitions of Platelet Response Data
Used for Indirect Comparison

Eltrombopag Romiplostim

Timing of definition for Post hoc analyses A priori
outcome measure

Overall platelet response Percentage of patients with a Percentage of patients with a
platelet count 250 and <400 x 10°/L | platelet count 250 x 10°/L on 24
for 24 consecutive* weeks, weeks during the trial, excluding
excluding those receiving rescue responses within 8 weeks after

medication during the assessment rescue medications
following a platelet response

Durable platelet response | Percentage of patients with platelet | Percentage of patients with
count 250 and <400 x 10%L on 26 of | platelet count 250 x 10°/L on =6
the last 8 weeks of treatment, of the last 8 weeks of treatment,
excluding subjects who received with no rescue medications at
rescue medication* any time during the trial

16



Statistical Methods for Indirect
Comparisons

Table 4. Indirect Comparison of Eltrombopag and Romiplostim

Analysis method

Previous analyses in STA submission and ERG report

Analysis 1 (eltrombopag STA): Summing of romiplostim data across trial arms then
Bucher indirect comparison

Analysis 2 (ERG report): Pooling of romiplostim dota via logistic regression (fixed
treatment effects) then Bucher indirect comparison

Alternative methods for indirect comparison

Analysis 3: Mete-analysis of romiplostim data (Mantel-Haenszel weighting) then
Bucher indirect comparison

Analysis 4: Pooling of romiplostim data via logistic regression (random treatment
effects) then Bucher indirect comparison*

Analysis 5: Bayesian metaregression of romiplostim and eltrombopog data (random
treatment effects)*




Bucher’s Method

- OR,,

C)Rab o
OR,,

log(OR ;) =10g(OR ,)) —10g(OR , )

Bucher HC, Guytt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons
in meta-analysis of randomized controlled trials. J.Clin.Epi (1997) 60(6):683-91.

18



Bayesian metaregression

* logit(py) = 0 + dipy (If ] = 2) + dig5) (if ] = 3) + B (iIf k= 2)

dI(Z) ~ N(Sz, Gdz), | — 1, 2, d|(3) ~ N(SS’ Gdz), | — 3, Gdz ~
uniform(0, 0.6)

Where

X denotes the frequency of platelet response for each trial (i = 1, 2, 3), treatment
group (j = 1 (placebo), 2 (romiplostim) or 3 (eltrombopag)) and splenectomy group (k =
1 (non-splenectomised), 2 (splenectomised)).

a; = log{pi;, /(1 - piy)} denote the fixed “study effect” (the log-odds of response for
placebo-treated patients) in the i-th trial

di; denote the “treatment effect” (log OR for romiplostim or eltrombopag versus
placebo) for each trial

B denote the log OR for the effect of splenectomy, which is assumed to be common
across all trials and treatment types

19



Bayesian metaregression (cont.)

« The model was used to estimate log OR for romiplostim versus placebo (5,) and for
eltrombopag versus placebo (3;).

« The indirect log OR for eltrombopag versus romiplostim was then estimated from the
posterior distribution of the difference d; - 5,.

Trial Treatment arm | Splenectomy status Logit model
Romiplostim (splenectomised) placebo splenectomised a, + B

active splenectomised o, + B+ d;mn
Romiplostim (non-splenectomised) placebo non-splenectomised a,

active non-splenectomised a, + d,
Eltrombopag placebo splenectomised a. + B

active splenectomised O, + B + daofay

placebo non-splenectomised a,

active non-splenectomised Oy + dajay

20



Overall Response — INCORRECT analysis

Eltrombopag Placebo Romiplostim Placebo
Cheng 77/135 (57%)  7/62 (11%) Kuter 33/42 (79%) 0/21 ( 0%)
Kuter 36/41 (88%) 3/21 (14%)
Total [ 771135 (57%) ] 7162 (11%) [ 69/83 (83%)] 3/42 (7%)
Unadjusted Eltrombopag Romiplostim

Overall Response 77/135 (57%) 69/83 (83%)

Odds Ratio OR=0.27

21



Overall Response — Analysis 1

Eltrombopag Placebo Romiplostim Placebo
Cheng 77/135 (57%)  7/62 (11%) Kuter 33/42 (79%) 0/21 ( 0%)
Kuter 36/41 (88%) 3/21 (14%)
Total [ 77/135 (57%) 7/62 (11%) ] [ 69/83 (83%) 3/42 (7%) ]
Adjusted Eltrombopag Romiplostim
Overall Response OR=10.4 OR=64.1

Odds Ratio OR=0.16

22




Overall Response — Analysis 2

Eltrombopag Placebo Romiplostim Placebo
Cheng 77/135 (57%)  7/62 (11%) Kuter 33/42 (79%) 0/21 ( 0%)
Kuter 36/41 (88%) 3/21 (14%)
Logistic Regression (Fixed)
Total [77/135 (57%) 7/62 (11%) ] 69/83 (83%) 3/42 (7%)
Adjusted Eltrombopag Romiplostim
Overall Response OR=10.4 OR=77.7

Odds Ratio OR=0.13
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Overall Response — Analysis 3

Romiplostim

Placebo

Kuter

Eltrombopag Placebo
Cheng 77/135 (57%) 7/62 (11%) Kuter
Total [ 771135 (57%) 7162 (11%) |

33/42 (79%)
36/41 (88%)

0/21 ( 0%)
3/21 (14%)

Meta-Analysis

69/83 (83%)

3142 (7%)

Adjusted

Overall Response

Odds Ratio

Eltrombopag

OR=10.4

Romiplostim

OR=68.4

OR=0.15
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Overall Response — Analysis 4

Eltrombopag Placebo Romiplostim Placebo
Cheng 77/135 (57%)  7/62 (11%) Kuter 33/42 (79%) 0/21 ( 0%)
Kuter 36/41 (88%) 3/21 (14%)
Logistic Regression (Random)
Total [77/135 (57%) 7/62 (11%) ] 69/83 (83%) 3/42 (7%)
Adjusted Eltrombopag Romiplostim
Overall Response OR=10.4 OR=105.8

Odds Ratio OR=0.10
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Overall Response — Analysis 5

Eltrombopag

Placebo

Romiplostim

Placebo

Cheng

Total

26/50 (52%)
51/85 (60%)

2/21 (10%)
5/41 (12%)

Kuter

Kuter

771135 (57%)

33/42 (79%)
36/41 (88%)

0/21 ( 0%)
3/21 (14%)

Bayesian Network

7162 (11%)

69/83 (83%)

3142 (7%)

Adjusted

Eltrombopag

Overall Response

Odds Ratio

OR=11.6

Romiplostim

OR=106.1

OR=0.11

26




Cooper KL et al. (2012): Indirect
Comparison Results for Overall Platelet
Response

OR eltrombopag OR romiplostim Indirect OR
vs placebo vs placebo eltrombopag
(95% CI) (95% CI) vs romiplostim
(95% CI)
(AEr;t"’r‘:)ynf'bSO;ag . 10.4 (4.4, 24.6) | 64.1(17.3,236.8) | 0.16 (0.03, 0.78)
Analysis 2

(Eltrombopag ERG report) 10.4 (4.4,24.6) | 77.7 (19.5,309.9) | 0.13 (0.03, 0.68)

Analysis 3 (analysis 1 but with
meta-analysis for pooling 10.4 (4.4, 24.6) 68.4 (12.8, 365.6) | 0.15 (0.02, 1.00)
romiplostim data)

Analysis 4 (analysis 2 but with
random treatment effects and
logistic regression for pooling
romiplostim data)

Analysis 5
(Bayesian meta-regression)

10.4 (4.4, 24.6) | 105.8 (24.6,598.8) | 0.10 (0.02, 0.57)

11.6 (4.4, 33.8) | 106.1 (25.0, 593.5) | 0.11 (0.02, 0.66)
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Limitations of indirect comparisons

* Indirect comparisons are viewed as ‘observational
evidence’

 Trials may differ in patient population and trial design

 Differences in patient characteristics included:

Required to have responded to
first-line treatment

Splenectomised patients (%) 36% 50%

Patients receiving concomitant ITP
medications at baseline (%)

Patients having received 23 prior therapies (%) — Slightly higher

Yes No

Slightly higher —

Patients withdrawing from the study (%) Higher —

28



Summary

« Consistent results were obtained across all of the
statistical methods explored in this study

« The Bayesian metaregression approach generated
similar results to other indirect comparison methods
and may be considered the most robust of the
analyses

* It incorporates all trial data in a single model and
accounts appropriately for parameter uncertainties

29
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Sources for data.

* In the context of this course data values are extracted
from published papers or internal company reports.

« They are summary Statistics, or more recently,
estimated parameters from models.

* l.e. Not primary data.

* Nearly always they will have been presented within a
frequentist paradigm.

Estimates, standard errors and perhaps confidence intervals
and “P-values”.



Extracting data

- Extracting data values from a paper is a time
consuming job that requires skill.
« Often the required piece of information is hidden in the text.

« Tables in published papers are often reserved for the “best
looking” analysis rather than the primary analysis.

- If all published papers followed the CONSORT
Statement, then life would be much easier.

Ref: Schulz KF, Altman DG, Moher D, for the CONSORT Group. CONSORT 2010 Statement: updated guidelines for
reporting parallel group randomised trials. Trials 2010, 11:32. (24 March 2010)



http://www.trialsjournal.com/content/11/1/32

CONSORT statement

ltem 1/7a —

For each primary and secondary outcome, results for each
group, and the estimated effect size and its precision
(such as 95% confidence interval).



Table 6- Example of reporting of summary results for
each study group (Continuous outcomes)

(Adapted from table 3 of van Linschoten(234))

Exercise therapy (n=65)

Control (n=66)

Adjusted
) ) difference*
Baseline 12 months Baseline 12 months (95% Cl) at
(mean (mean (mean (mean 12 months
(SD)) (SD)) (SD)) (SD))
Function
score (0- 64.4 (13.9) |83.2 (14.8) 65.9 (15.2) | 79.8 (17.5) 4.52 (0.73
t0 9.76)
100)
Pain at rest L2
414 (2.3) |1.43(2.2) 4.03(2.3) |2.61(2.9) |2.16to0-
() 0.42)
Pain on -1.19 (-
activity (0- [6.32(2.2) |2.57(2.9) 5.97 (2.3) |3.54(3.38) |2.22to -
100) 0.16)

* Function score adjusted for baseline, age, and duration of symptoms.



http://www.consort-statement.org/consort-statement/references0/

ltem 17b: Binary outcomes, Explanation
(my emphasis)

- When the primary outcome is binary, both the relative
effect (risk ratio (relative risk) or odds ratio) and the
absolute effect (risk difference) should be reported
(with confidence intervals), as neither the relative
measure nor the absolute measure alone gives a
complete picture of the effect and its implications.

 Different audiences may prefer either relative or
absolute risk, ....



Table 5 - Example of reporting of summary results for
each study group (binary outcomes)*

(Adapted from table 2 of Mease et al(103))

Number (%
0) Risk difference

Endpoint Etanercept Placebo (95% CI)
(n=30) (n=30)

Primary endpoint

Achieved

PsARC at12 |26 (87) 7 (23) 63% (44 to 83)

weeks

Secondary endpoint

Proportion of patients meeting ACR criteria:

ACR20 22 (73) 4 (13) 60% (40 to 80)

ACR50 15 (50) 1(3) 47% (28 to 66)

ACR70 4 (13) 0 (0) 13% (1 to 26)



http://www.consort-statement.org/consort-statement/references0/

ltem 17b - For binary outcomes, presentation of both
absolute and relative effect sizes is recommended

Example

“The risk of oxygen dependence or death was reduced by 16% (95% CI 25% to 7%). The absolute
difference was -6.3% (95% CI -9.9% to -2.7%); early administration to an estimated 16 babies would
therefore prevent 1 baby dying or being long-term dependent on oxygen” (also see table 7).(242)

Table 7 - Example of reporting both absolute and relative effect sizes
(Adpated from table 3 of The OSIRIS Collaborative Group(242))

Percentage (No)

Earl Delayed
s selective | Risk ratio Risk difference

outcome | administra

on administra | (95% Cl) (95% Cl)

tion

(1=1344) | "1 346
Death or
oo 0.84 (0.75 t
dependence ! . 0]
at‘expocted | 319 (429) | 38.2(514) | g gq 6.3 (-9.9 t0 -2.7)
date of

delivery”



http://www.consort-statement.org/consort-statement/references0/
http://www.consort-statement.org/consort-statement/references0/

- We will return to binary outcomes tomorrow.



Intention to Treat

« Usually we will want to extract ITT results from each
study.

10



Intention to Treat (ITT) and Missing Data

« In areview of 403 RCTs published in 10 leading medical journals in 2002,
249 (62%) reported the use of intention-to-treat analysis for their primary
analysis. This proportion was higher for journals adhering to the CONSORT statement (70% v
48%). Among articles that reported the use of intention-to-treat
analysis, only 39% actually analysed all participants as randomised,
with more than 60% of articles having missing data in their primary
analysis.(221)

«  Other studies show similar findings.(18) (222) (223) Trials with no reported
exclusions are methodologically weaker in other respects than those that
report on some excluded participants,(173) strongly indicating that at
least some researchers who have excluded participants do not report
it.

Ref: Schulz KF, Altman DG, Moher D, for the CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group
randomised trials. Trials 2010, 11:32. (24 March 2010)

11


http://www.consort-statement.org/consort-statement/references0/
http://www.consort-statement.org/consort-statement/references0/
http://www.consort-statement.org/consort-statement/references0/
http://www.consort-statement.org/consort-statement/references0/
http://www.consort-statement.org/consort-statement/references0/
http://www.trialsjournal.com/content/11/1/32

- We will return to the impact of missing data later.

12



Types of data.

« Usually we would compare treatment effects adjusted
for baseline.
* Like Ismeans and their SEs for off-time reduction.

- Often these are not published and only raw means and
standard errors are tabled.

« Sometimes we can reverse calculate SED from P
values or confidence intervals.

« Two major forms of extraction:

1. Absolute mean and SD for each treatment
. Beware of distinction between SE for mean and SD.

2. Differences with some measure of precision, often an SED or
Confidence Interval.

13



Types of data.

« Often need a collection of different strategies. May
iInclude borrowing information across studies.

 Variability only known in some studies.

« See Stevens (2013) for formal approach to doing this within
Bayesian context.

« This is only one of several possible Bayesian models.
* Very easy in SAS 9.3 MCMC using new missing data methods.

[Stevens, J. 2013. A note on dealing with missing standard errors in meta-analyses of
continuous outcome measures in WinBUGS. Pharmaceut. Statist. 2011, 10 374—
378]

14



BM RESEARCH

Supervised exercise therapy versus usual care for
patellofemoral pain syndrome: an open label randomised
controlled trial

R van Linschoten, sports physician," M van Middelkoop, researcher," M Y Berger, researcher, general
practitioner," E M Heintjes, research associate,* ] A N Verhaar, professor of orthopaedics,? S P Willemsen,
statistician,"* B W Koes, research professor,’ S M Bierma-Zeinstra, associate research professor’

This Is the original paper for the previous Normal data
example.

15



Try extracting Function Score

Table 3|Function and pain scores at 3 and 12 months follow-up

Exercise therapy Control
(n=65) (n=66)
Baseline 3 months 12 months Baseline 3 months 12 months Adjusted difference* Adjusted difference*
(mean (SD)) (mean (SD)) (mean (SD)) (mean (SD)) (mean (SD)) (mean (SD)) (95% (1) at 3 months (95% ClI) at 12 months
Function score (0-100) 64.4 (13.9) 78.8 (15.5) 83.2(14.8) 65.9 (15.2) 74.9 (17.6) 79.8 (17.5) 492 (0.14t09.72) 452 (-0.73109.76)
Pain at rest (0-10) 4,14 (2.3) 2.30 (2.5) 1.43(2.2) 4.03(2.3) 3.22(2.8) 2.61(2.9) -1.07 (-1.92to0 -0.22) -1.29(-2.16 to -0.42)
Pain on activity (0-10) 6.32(2.2) 3.81 (2.9) 2.57 (2.9 5.97 (2.3) 4.60 (3.0) 3.54 (3.38) -1.00(-1.91 to -0.08) -1.19 (-2.22 to -0.16)

Mean scores are reported for those patients available at that time point. Adjusted differences are reported for the total available in analysis.

*Function score was adjusted for baseline score, age, and duration of symptoms. Pain at rest was adjusted for baseline score and age. Pain on activity was adjusted for baseline score, age,
and gender. Positive adjusted differences for the function score, and negative difference for pain scores, are in favour of the exercise group.

We might extract the raw data means and ignore
adjustments.

A: Mean=83.2 SD=14.8 N=65
B: Mean= 79.8 SD=17.5 N=66

Difference = 3.40
Implied SED= + (14.82/65 + 17.52/66) = 2.83

16



Table 3|Function and pain scores at 3 and 12 months follow-up

Exercise therapy Control
(n=65) (n=66)
Baseline 3 months 12 months Baseline 3 months 12 months Adjusted difference* Adjusted difference*
(mean (SD)) (mean (SD)) (mean (SD)) (mean (SD)) (mean (SD)) (mean (SD)) (95% (1) at 3 months (95% ClI) at 12 months
Function score (0-100) 64.4 (13.9) 78.8 (15.5) 83.2(14.8) 65.9 (15.2) 74.9 (17.6) 79.8 (17.5) 4.92 (0.14 t0 9.72) 452 (-0.73109.76)
Pain at rest (0-10) 4.14 (2.3) 2.30 (2.5) 1.43 (2.2) 4.03(2.3) 3.22 (2.8) 2.61 (2.9) -1.07 (-1.92t0 -0.22) -1.29(-2.16 t0 -0.42)
Pain on activity (0-10) 6.32 (2.2) 3.81 (2.9) 2.57 (2.9 5.97 (2.3) 4.60 (3.0) 3.54 (3.38) -1.00 (-1.91 to -0.08) -1.19(-2.22t0-0.16)

Mean scores are reported for those patients available at that time point. Adjusted differences are reported for the total available in analysis.
*Function score was adjusted for baseline score, age, and duration of symptoms. Pain at rest was adjusted for baseline score and age. Pain on activity was adjusted for baseline score, age,
and gender. Positive adjusted differences for the function score, and negative difference for pain scores, are in favour of the exercise group.

Or use adjusted difference 4.52

Overall mean= (83.2*65 + 79.8*66)/131 = 81.49
Adjusted means

A: (81.49 + 4.52*66/131) = 83.77

B: (81.49 - 4.52*65/131) = 79.25

SED =(9.76 — (-0.73) ) / (2 * 1.96) = 2.68 [2.65 if use T]
Smaller SED resulting from adjustment (was 2.83).

Effective SE for Ais 2.68 * \(66/131) =1.90. SD for A=15.34
Effective SE for B is 2.68 * V( 65/131) =1.89. SD for B=15.34
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therapy on pain were 0.56 and 0.54, respectively. The

US| N g th e difference in function scores at 12 months, however,
P V al e did not reach statistical significance (4.52; 95% CI
ue. —0.73 to 9.76; P=0.09). The different between the two

groups in the pmp{)rti{m of patients rep{)rting “recov-
er}-'” at 12 months was not signiﬂcant.

* Or extract the SED from the P-value.

“The difference in function scores at 12 months, however,
did not reach statistical significance (4.52, 95% CIl -0.73
to 9.76; P=0.09).”

Assume equal two sided test,
SED=4.52 / gnorm(1 - 0.045) = 2.67

Note how few digits are given here (could be P=0.08 or 0.10).
4.52 [ gnorm(1 - 0.040)=2.58
4.52 | gnorm(1 - 0.050)=2.75

18



Data we hand into analysis

- The data we get from each trial may be either
« Mean and SD or SE for each arm
- Difference of means and SEDs.

« Analysis is easiest if form of data going into analysis is
the same for every trial.
« Mean and SD or SE for each arm

 Difference of means and SEDs. Only need comparison to a
single arm (control?) and not all comparisons.

19



CASE STUDY WITH NORMAL
DATA



« This is a very small network, which we will use as an
example.

« Usually networks are more extensive.

21



Example of network diagram

Treatment 4

Treatment 2 Fiﬁ\z
2t N\

2 Treatment 5

Placebho
(Treatment 1)

Treatment 3

Figure 3 Parkinson network: each edge represents a treatment, connecting lines indicate pairs of
treatments which have been directly compared in randomised trials. The numbers on the lines indicate

the numbers of trials making that comparison.

NICE Decision Support Unit Technical Series Document 1 Introduction to evidence synthesis for decision making 22



http://www.nicedsu.org.uk/TSD1 Introduction_final_03_02_12.pdf

Parkinson’s example

» Mean “off-time” reduction in patients given
dopamine agonists as adjunct therapy in Parkinson’s
disease.

e The available data are the mean, standard
deviation and number of patients in each trial arm.

« Seven studies of five different drugs:

* Placebo, coded 1,
* Five active drugs coded 2 to 5.

Example from NICE Decision Support Unit Technical Series Document

23



The Parkinson’s data

Study Treatment y sd n Difference SE(diff)
[Calculated] | [Calculated]

1 1 -1.22 3.7 54
3 -1.53 4.28 95 -0.31 0.668

2 1 -0.7 3.7 172
2 -2.4 3.4 173 -1.7 0.383

3 1 -0.3 4.4 76
2 -2.6 4.3 71 -2.3 0.718
4 -1.2 4.3 81 -0.9 0.695

4 3 -0.24 3 128
4 -0.59 3 72 -0.35 0.442

5 3 -0.73 3 80
4 -0.18 3 46 0.55 0.555

6 4 -2.2 2.31 137
5 -2.5 2.18 131 -0.3 0.274

7 4 -1.8 2.48 154
5 -2.1 2.99 143 -0.3 0.320

NICE Decision Support Unit Technical Series Document 1 Introduction to evidence synthesis for decision making

24



http://www.nicedsu.org.uk/TSD1 Introduction_final_03_02_12.pdf

Differences from Standard analysis.

* Note how the SDs are estimated separately within
treatment within Study and are not based on pooled
variance within study.

« This is quite common in this area when they are extracted from
summary statistics rather than output from analysis.

- Comparison of SDs across studies can be interesting.

25



Differences from Standard analysis.

« This example is not adjusted for other covariates

- That is not adjusted for imbalance in covariate between arms
within study.

« Adjusted treatment differences can be used.

« Impact of changes in covariates between study is a
different question.

- That would be important if there is a Treatment by covariate
Interaction.

* Meta-regression may be possible using summary for trial.

- Often based on Observed Cases, rather than an MAR
analysis. Often handling of missing data is not
mentioned in publications (though it should be).

26



Seen as an incomplete block design.

Study/Treatment 1 2 3 4 5
1 -1.22 -1.53
2 -0.7 -2.4
3 -0.3 -2.6 -1.2
4 -0.24 -0.59
5 -0.73 -0.18
6 -2.2 -2.5
7 -1.8 -2.1

27




The Statistical model

« Simple two-way ANOVA.
« Study I and Arm k, with Treatment t(i,k)

K:k“"N(@ikr Seizk)
O = Ui T Or(ip

» Constraint that o; Is zero for a chosen treatment, usually
o, = 0.

« The notation 0 Iis used here as it represents the
difference from some reference treatment such as
placebo, which may not be observed in this i’th trial.

28



Useful reference

« This paper is ideal ammunition for the Statistician in
explaining how much of indirect comparisons comes
down to this very simple two-way ANOVA model.

Piepho H. P., Williams E. R., and Madden L. V.. 2012. The Use of
Two-Way Linear Mixed Models in Multitreatment Meta-Analysis.

Biometrics.
DOI: 10.1111/j.1541-0420.2012.01786.x

And they are agricultural Statisticians!
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All arms and all studies equally precise.
Not the recommended analysis as not efficient.
But it is unbiased.

Two- way ANOVA

proc mixed data=Parkinsons;

class Study Treatment;

model Y= Study Treatment /solution outp=Pred,;
iId SE Study Treatment;

Ismeans Treatment / diff=control("1");

run,
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data Parkinsons;

input Study Treatment Y SD N ;
Var=SD*SD/N;

SE=sqrt (Var) ;

Weight=1l/Var;

Record= N ;

datalines;

1 1 -1.22 3.7 54
1 3 -1.53 4.28 95
2 1 -0.7 3.7 172
2 2 -2.4 3.4 173
3 1 -0.3 4.4 76
3 2 -2.6 4.3 71
3 4 -1.2 4.3 81
4 3 -0.24 3 128
4 4 -0.59 3 72
5 3 -0.73 3 80
5 4 -0.18 3 46
6 4 -2.2 2.31 137
6 5 -2.5 2.18 131
7 4 -1.8 2.48 154
7 5 -2.1 2.99 143

run;



The estimates. Note the d.f.

Standard

Effect Study Treatment Estimate Error DF t Value
Intercept -2.1000 0.2576 4 -8.15
Study 1 0.1426 0.4108 4 0.35
Study 2 0.6705 0.4488 4 1.49
Study 3 0.7137 0.3691 4 1.93
Study 4 1.3782 0.3578 4 3.85
Study 5 1.3382 0.3578 4 3.74
Study 6 -0.4000 0.2974 4 -1.34
Study 7 0

Treatment 1 0.8511 0.4316 4 1.97
Treatment 2 -1.0921 0.4628 4 -2.36
Treatment 3 0.3137 0.3979 4 0.79
Treatment 4 0.3000 0.2974 4 1.01
Treatment 5 0

Differences of Least Squares Means

Standard

Effect Treatment _Treatment Estimate Error DF t
Treatment 2 1 -1.9432 0.2895 4
Treatment 3 1 -0.5374 0.3201 4
Treatment 4 1 -0.5511 0.3127 4
Treatment 5 1 -0.8511 0.4316 4

Pr >

Value
-6.71
-1.68
-1.76
-1.97

o O O O o o o

o O O o

Il

.0012
.7460
.2094
.1253
.0183
.0201
.2499

.1199
L0777
.4746
.3702

Pr > |t|
0.0026
0.1685
0.1528
0.1199
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Fixed effect analysis.

proc mixed data=Parkinsons;

class Study Treatment;

model Y= Study Treatment / ddf= 500, 500;
weight Weight;

parms 1 / hold=(1);

Ismeans Treatment / diff=control("1") df=500;

run,

Note no covariance parameters are estimated.

Variability is assumed known and fixed (so set denominator d.f. at large value).
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Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
Study 6 500 6.14 <.0001
Treatment 4 500 7.94 <.0001
Least Squares Means

Standard
Effect Treatment Estimate Error DF t Value Pr > |t]|
Treatment 1 -0.7445 0.3443 500 -2.16 0.0311
Treatment 2 -2.5561 0.3981 500 -6.42 <.0001
Treatment 3 -1.2226 0.2546 500 -4.80 <.0001
Treatment 4 -1.2685 0.2056 500 -6.17 <.0001
Treatment 5 -1.5685 0.2727 500 -5.75 <.0001

Differences of Least Squares Means
Standard

Effect Treatment _Treatment Estimate Error DF t Value Pr > |t|
Treatment 2 1 -1.8116 0.3327 500 -5.45 <.0001
Treatment 3 1 -0.4781 0.4866 500 -0.98 0.3263
Treatment 4 1 -0.5240 0.4786 500 -1.09 0.2741
Treatment 5 1 -0.8240 0.5220 500 -1.58 0.1151
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Mean and 95% CI for difference from Treatment 1.

Treatment

Treatment 2

Treatment 3

Treatment 4

Treatment s

Parkinsons example

Mean off-time

-1 0

Change relative to reference
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Is this correct?

* We could rebuild the original data (subject data within
each trial) and analyze that.

- Within each arm place data at either
(Mean + Delta) or (Mean - Delta)
where delta = SD ((n-1)/n).
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* Generate full data;

data Full;

set Parkinsons;

keep FullRec Study Treatment Response;

retain FullRec O;

drop i;

M=N;

* Handle case of N being odd;

if mod(n,2) then do;
Response=Y;
FullRec=FullRec+l;
output;
M=M-1;

end;

Delta=SD*sqrt ((N-1) /M) ;

do i=1 to M;
Response=Y+Delta;
FullRec=FullRec+l;
output;
Delta=-Delta;

end;

run;
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Tabulate mean and SD as check.

Response

n S S S S S S S S S S S S f S Ff S S ffSFFSSFfSFFSSFFSFFfS
’ ’ Treatment ,
, Y S S S S f S S f S S S S5 f SFfSFFSSFf5Ff . SEFSFFSFFffff%
’ ' 1 , 2 , 3 , 4 , 5 ,
, Y S ff S f S ff S fsFf SFfSFF FFfsFf SFfSFF FFfSFf . FFfFfff%
, , Mean , Std , Mean , Std , Mean , Std , Mean , Std , Mean , Std ,
E B 6 6 6 6 6 6 6 6 6 6 6 0 6 0 6 6 A

, Study , , , , , , , , , , ,
FFffFfffs , , , ’ ’ ’ , , / /
;1 , -1.22, 3.70, <y ., -1.53, 4.28, <y . .y <y
Y S S S S S S S S f S ffSF SSffSF SSFffF " fFFfffw
, 2 , -0.70, 3.70, -2.40, 3.40, .y .y . . oy oy
R R 2 6 N 6 i 6 6
;3 , -0.30, 4.40, -2.60, 4.30, .y ., -1.20, 4.30, . <y
Y S S S S S S S F S ffSF SSffSF SSFffF " fFFfffw
4 , -y <y . ., -0.24, 3.00, -0.59, 3.00, oy oy
R R 6 2 6 N 2 6 R 6 6 6
;5 , . <y <y ., -0.73, 3.00, -0.18, 3.00, . <y
ER DB R 6 6 6 6 6 6 6 6 6 0 6 0 B 6 A
, 6 , -y <y . - .y ., -2.20, 2.31, -2.50, 2.18,
i8R i R 2 6 N R 6 6 6 6
.7 , . <y <y . .y ., -1.80, 2.48, -2.10, 2.99,

S <SS S <SS S < S FFFfff<SESSFF<SFFFFS<SESFFF<SFFFFF<SFFFFfF@



Analysis model

proc mixed data=Full;

class Study Treatment;

model Response=Study Treatment /ddfm=kr,
Ismeans Treatment / diff=control("1");

repeated /subject=FullRec group=Study*Treatment;

run,

Note the unusual use of separate variances.
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Individual variance for each Study*Arm

Covariance Parameter Estimates

Cov Parm

Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual

Residual

Effectively recovered just the SD? for each combination.

Subiject
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec

Group

Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment

SN J9 oo 0 o W W W DNdMDND R PR
o & 00 b b W b WA MNP DN R W

Estimate
13.6307
18.2842
13.6831
11.5551
19.3198
18.4157

.4421

.0001

.0004

.0203

.0626

.3275

.7449

.1414

.9180

[
(02]

oo o &~ U1 © VW YV
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Very nearly the same

Differences of Least Squares Means

Effect

Treatment
Treatment
Treatment
Treatment

Treatment
2

3
4
5

_Treatment Estimate
1 -1.8118
1 -0.4774
1 -0.5244
1 -0.8244

Standard
Error
0.3338
0.4899
0.4819
0.5252

DF
490
334
364
503

Value
-5.43
-0.97
-1.09
-1.57

Pr > |t|
<.0001
0.3305
0.2772
0.1171
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Back to using summary data.
What happens if | forget to use HOLD?

proc mixed data=Parkinsons ;

class Study Treatment;

model Y= Study Treatment / ddfm=kr;
weight weight;

Ismeans treatment / diff=control("1");

run,
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Standard errors are too small.

Differences of Least Squares Means

Standard
Effect Treatment _Treatment Estimate Error DF t Value Pr > |t]|
Treatment 2 1 -1.8116 0.2516 4 -7.20 0.0020
Treatment 3 1 -0.4781 0.3680 4 -1.30 0.2637
Treatment 4 1 -0.5240 0.3620 4 -1.45 0.2213
Treatment 5 1 -0.8240 0.3948 4 -2.09 0.1052

- Variability has been assessed from the between arm and study. So is
too small here.

- Often the standard errors will be too large.

* Code looks sensible so beware!
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Using GENMOD for the correct analysis

proc genmod data=Parkinsons;

class Study Treatment;

model Y= Study Treatment / dist=normal noscale;
weight Weight;

Lsmeans Treatment / diff=control("1");

run;

 The NOSCALE option means that a scale parameter
(residual) Is not estimated but fixed at 1.

44



Same results using GENMOD.

Differences of Treatment Least Squares Means

Standard
Treatment _Treatment Estimate Error
2 1 -1.8116 0.3327
3 1 -0.4781 0.4866
4 1 -0.5240 0.4786
5 1 -0.8240 0.5220

Value

-5.45
-0.98
-1.09
-1.58

Pr > |z|

<.0001
0.3259
0.2736
0.1144
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Note on use of GENMOD

 GENMOD uses maximum likelihood rather than REML.
* Not an issue here as we are not estimating the residual.
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Summary
[INormal data: Fixed effects — Frequentist]

« Use summary values and assume variances fixed and
known (do not estimate any covariance paramaters).
* Use WEIGHT.

* Use PARMS and HOLD with MIXED or GLIMMIX, or NOSCALE
with GENMOD.
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The dark side!

Going Bayesian ...



Why Bayesian?

- Today we will develop Bayesian solutions for the
Normal case.

 Three reasons

1. Many of the methods being promulgated, especially for Binary
data are Bayesian.

2. It provides a way to handle the heterogeneity when it is not
well estimated from within the meta-analysis.

3. It provides a way to fit complex hierarchical models which
have been difficult to fit within a maximum likelihood paradigm
(see tomorrow).
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The NICE results (Bayesian)

Flat conjugate priors. Bound to be the same for Fixed effects!

Table A9 Parkinzon example: posterior mean, standard dewiation (sd), median and 95% Credible

interval (Crl) for both the fixed and random effects model: for the treatment effects of Treatmments I to £

(dhiz to diz) relatve to Placebo, absolute effects of Placebo (1) and treatments 2 to 5 (T: to Tz,
heterogeneity parameter r and model fit statistics for different data orpes.
FE model EE modsl
mean sd median Crl mean =d median Crl
_ _ Arm-level data: Example &
da -1.81 033 -1.81 (-2.46-1.16) -1.85 034 -184 (-2.91.-0.83)
d)3 047 049 047 (-1.43.0.4%) 053 0686 -050 (-1.78,0.73)
d4 032 048 -D.352 (-1.46.0.43) 053 065 -053 (-1.77.0.71)
dys -0.82 052 -0D.82 (-1.84.0.22) 083 080 083 (-2.35,0.69)
T, 073 02 -0.73 (-1.16.,-0.30) 073 022 -073 (-1.16.-0.30)
Tz 254 040 -254 (-3.32,-1.76) 258 038 -257 (-3.72,-1.50)
T, -1.21 053 -1.20 (-2.25,-0.15) 1.3 070 -1.23 (-2.57,0.10)
T, -1.25 053  -1.25 (-2.25.-0.21) -1.26 069  -1.26 (-2.57,0.05)
T, -1.35 057 -1.55 (-2.66,-0.43) -1.57 083 -1.56 (-3.14,0.02)
[ - - - - 040 043 0.28 (0.01,1.55)
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NICE Winbugs code (Fixed effects model).

# Normal likelihood, identity link

# Fixed effects model for multi-arm trials

model{

for(i in 1:ns){
muli] ~dnorm(0,.0001) # vague priors for all trial baselines
for (k in 1:nali]) {

var(i,k] <- pow(seli,k],2) # calculate variances
precli,k] <- 1/var]i K] # set precisions
y[i,k] ~ dnorm(theta[i,k],precli,k]) # normal likelihood
theta[i,k] <- mu[i] + d[t[i,k]] - d[t[i,1]] € Unecessary complication # model for linear predictor
dev[i,k] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec]i,k] #Deviance contribution
}
resdev[i] <- sum(dev[i,1:na[i]]) # summed residual deviance contribution for this trial
}
totresdev <- sum(resdev(]) #Total Residual Deviance
d[1]<-0 # treatment effect is zero for reference treatment
for (k in 2:nt){ d[K] ~ dnorm(0,.0001) } # vague priors for treatment effects
}
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Easy Bayes in SAS.
Same GENMOD as before.

proc genmod data=Parkinsons;
class Study Treatment;
model Y= Study Treatment / dist=normal noscale;

bayes seed=1352 STATS(alpha=0.05 percent=2.5 25 50
75 97.5 )=all;

weight Weight;
Ismeans Treatment / diff=control("1");

run,.
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T

2
3
4
5

Mean and SD of posterior are very similar to ML.
Based on MCMC sample.
Theory says they are the same for one specific prior.

Sample Differences of Treatment Least Squares Means

reatment

1
1
1
1

_Treatment

Standard
N Estimate Deviation 2.5th
10000 -1.8150 0.3324 -2.4513
10000 -0.4867 0.4900 -1.4420
10000 -0.5302 0.4798 -1.4703
10000 -0.8302 0.5220 -1.8638

-1.8141
-0.4862
-0.5367
-0.8337

These are summaries of the sampled posterior distribution.

FE modal
mean sd median Crl
Arm-level d
dp3 -181 033 -1.81 (-2.46.-1.16)
d13 047 049 047 (-1.43.049)
di4 052 048 052 (-1.46.0.43)
dys 082 052 082 (-1.84,0.22)

-1.5887
-0.1600
-0.2028
-0.4734

53



Markov Chain Monte Carlo (MCMC)
Sample from the posterior.

* When we use MCMC to solve a Bayesian problem we
get a sample from the posterior distribution.
« Itis only a sample, so run it again (new seed) and you get a
different sample.
* Need to worry about Markov Chain error (accuracy of our
statistics).
« The sample is usually autocorrelated.

* We estimate the real properties of the posterior
distribution from the sample.
- Sample mean for mean of posterior.

- Sample percentiles estimate percentiles for posterior
distribution, such as median.
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Sample from the posterior.

* For any statistic derived from the model parameters,
we calculate the value for each member of the sample,
and we have a sample from its posterior.

« Odds ratio from parameters in logistic model.
* Log(HR) from Hazard Ratio.

* Important to realize that the Markov chain is stepping
around in the parameter space, and the frequency of
times it chooses a point is proportional to the posterior
probability.

« Unlike Winbugs the Metropolis-Hastings algorithm in the MCMC
procedure can repeat a point in the parameter space.
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GENMOD can spot Conjugancy.
This allows direct sampling.

Diagnostics for Treatment4

1.0

045

0.0

Treatmentd

-0.5

2000 4000 6000 8000 10000 12000

[teration
1.0

045

0.0

Autocarrelation
FPosterior Density

-0.5

-1.0
0 10 20 30 40 50 -0.5 0.0 0.5 1.0
Lag Treatmentd
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Understanding the Diagnostic plots
* Trace Plots

* Is the chain stationary and mixing?
« Constant mean, constant variance.
* Moving around the parameter space freely.

* Moving rapidly between extremes.

Trace Plots

114

110

What you do not
want!
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Diagnostic plots

 Autocorrelation

Measures the correlation between each draw and its
kth lag.

The further the lag from the original measure the
smaller you expect the correlation to be.

High correlation between distant draws suggests
poor mixing.
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Diagnostic plots

* Density estimate

« This is a Kernel density estimate, and will behave
badly at a boundary.

« S0 use with care for Variances and SDs., especially
variance components, where likelihood may be
Increasing at the boundary.

[Later we show how to use SGPLOT to get a better
picture.]
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The MCMC procedure in SAS.

« Here we introduce the MCMC procedure in SAS.

* It is important which version of SAS you are using.
- SAS 9.2 Make sure you are using Level 2M3.

- SAS 9.3 Has many new features that make coding easier, and
the procedure run faster.

* It basically does the things that Winbugs does, but in a
slightly different way.
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More difficult Bayesian solution in SAS.
The MCMC procedure. (SAS 9.2)

ods graphics on;

proc mcmc data=Parkinsons ntu=1000 nmc=200000 thin=20 seed=246810;
array P_Study[7] P_Studyl-P_Study7;

array P_Treat[5] P_Treatl-P_Treat5;

parms P_Studyl-P_Study7 O;

parms P_Treat2-P_Treat5 O;

prior P_Study1-P_Study7 ~ general(0);

prior P_Treat2-P_Treat5 ~ general(0);
p_Treat[1]=0;

mu= P_Study[Study] + P_Treat[Treatment] ;
model Y ~ normal(mean=Mu, sd=SE);

run,

* Note the similarity to NLMIXED code. / See next slide(s)



Declare the fixed effects parameters
and constraint

ods graphics on;

proc mcmc data=Parkinsons ntu=1000 nmc=200000 thin=20 seed=246810;
array P_Study[7] P_Studyl1-P_Study7;

array P_Treat[5] P_Treatl-P_Treat5;

parms P_Studyl-P_Study7 0O;

parms P_Treat2-P_Treat5 O;

prior P_Study1-P_Study7 ~ general(0);

prior P_Treat2-P_Treat5 ~ general(0);
p_Treat[1]=0;

mu= P_Study[Study] + P_Treat[Treatment] ;
model Y ~ normal(mean=Mu, sd=SE);

run;

+ Set fixed effects constraint with treat effect for treatment 1 as zero.
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Set priors

ods graphics on;

proc mcmc data=Parkinsons ntu=1000 nmc=200000 thin=20 seed=246810;
array P_Study[7] P_Studyl-P_Study7;

array P_Treat[5] P_Treatl-P_Treat5;

parms P_Studyl-P_Study7 O;

parms P_Treat2-P_Treat5 O;

prior P_Studyl-P_Study7 ~ general(0);

prior P_Treat2-P_Treat5 ~ general(0);
p_Treat[1]=0;

mu= P_Study[Study] + P_Treat[Treatment] ;
model Y ~ normal(mean=Mu, sd=SE);

run;

« general(0) is a completely flat (improper) prior.
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Declare the model

ods graphics on;

proc mcmc data=Parkinsons ntu=1000 nmc=200000 thin=20 seed=246810;
array P_Study[7] P_Studyl-P_Study7;

array P_Treat[5] P_Treatl-P_Treat5;

parms P_Studyl-P_Study7 O P_Treat2-P_Treat5 O;

prior P_Studyl-P_Study7 ~ general(0);

prior P_Treat2-P_Treat5 ~ general(0);

P_Treat[1]=0;

Mu= P_Study[Study] + P_Treat[Treatment] ;

model Y ~ normal(mean=Mu, sd=SE);

run;
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10,000 with a thin of 20 Is not enough
... If you want to report to 2 decimal places

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%
P _Studyl 10000 -1.1245 0.4159 -1.4084 -1.1312 -0.8414
P_Study2 10000 -0.6371 0.2662 -0.8143 -0.6393 -0.4578
P_Study3 10000 -0.5921 0.3530 -0.8336 -0.5965 -0.3536
P_Study4 10000 0.1083 0.4840 -0.2208 0.0973 0.4330
P_Study5 10000 -0.0563 0.5104 -0.4146 -0.0583 0.2862
P_Studyé6 10000 -1.7022 0.4784 -2.0333 -1.7093 -1.3812
P_Study7 10000 -1.3051 0.4808 -1.6367 -1.3090 -0.9880
P Treat2 10000 -1.8144 0.3427 -2.0448 -1.8149 -1.5870
P Treat3 10000 -0.4607 0.4661 -0.7695 -0.4526 -0.1419
P Treat4 10000 -0.4980 0.4491 -0.7965 -0.4916 -0.1933
P Treat5 10000 -0.7965 0.4908 -1.1301 -0.7895 -0.4592
Monte Carlo Standard Errors
Standard

Parameter MCSE Deviation MCSE/SD

P Treat2 0.00946 0.3427 0.0276

P Treat3 0.0374 0.4661 0.0803

P Treat4 0.0335 0.4491 0.0745

P Treat5 0.0351 0.4908 0.0716



100,000 with a thin of 20...

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%
P _Studyl 100000 -1.1335 0.4335 -1.4275 -1.1326 -0.8424
P_Study2 100000 -0.6411 0.2612 -0.8166 -0.6404 -0.4646
P_Study3 100000 -0.5967 0.3652 -0.8439 -0.5969 -0.3504
P_Study4 100000 0.1119° 0.5107 -0.2331 0.1155 0.4615
P_Study5 100000 -0.0510 0.5375 -0.4150 -0.0484 0.3170
P_Studyé6 100000 -1.6947 0.5178 -2.0404 -1.6923 -1.3453
P_Study7 100000 -1.2941 0.5182 -1.6401 -1.2922 -0.9446
P Treat2 100000 -1.8081 0.3324 -2.0325 -1.8078 -1.5846
P Treat3 100000 -0.4628 0.4924 -0.8006 -0.4662 -0.12901
P Treat4 100000 -0.5068 0.4866 -0.8377 -0.5085 -0.1814
P Treat5 100000 -0.8056 0.5313 -1.1658 -0.8078 -0.4506
Monte Carlo Standard Errors
Standard

Parameter MCSE Deviation MCSE/SD

P_Treat2 0.00241 0.3324 0.00725

P_Treat3 0.00927 0.4924 0.0188

P_Treat4 0.0100 0.4866 0.0206

P Treat5 0.0106 0.5313 0.0200



Treatment 5 — Treatment 1

Diagnostics for P_Treatb
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Other ways to improve the MCSE

 Different method for the proposal distribution.
* propcov=quanew on MCMC statement.

* Modify the arrangement of parameters into blocks using
the PARMS statements.

* |dea Is to reduce the autocorrelation.
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10,000 only, using propcov=quanew and
a single PARMS statement

parms P_Study1-P_Study7 0 P_Treat2-P_Treat5 O;

Monte Carlo Standard Errors

Standard
Parameter MCSE Deviation MCSE/SD
P_Studyl 0.00594 0.4299 0.0138
P_Study2 0.00373 0.2643 0.0141
P_Study3 0.00492 0.3602 0.0137
P_Study4 0.00750 0.5075 0.0148
P_Study5 0.00734 0.5284 0.0139
P_Studyé 0.00705 0.5082 0.0139
P_Study7 0.00744 0.5133 0.0145
P Treat2 0.00445 0.3321 0.0134
P Treat3 0.00713 0.4872 0.0146
P Treat4 0.00695 0.4824 0.0144
P Treat5 0.00749 0.5240 0.0143

Bayesian often look to have MCSE/SD < 0.05. o



Single PARMS and propcov=QUANEW

Diagnostics for P_Treatd
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MCMC in SAS 9.3
Random statement makes code very easy!

proc mcmc data=Parkinsons nmc=200000 thin=20
seed=246810;

random Studyeffect ~general(0) subject=Study init=(0);

random Treat ~general(0) subject=Treatment init=(0)
zero=first monitor=(Treat);

Mu= Studyeffect + Treat ;
model Y ~ normal(mean=Mu, sd=SE);
run;

* A fixed effect iIs same as a random effect with fixed
distribution (no parameters).

 Note. No need to know the number of levels.
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Using RANDOM. MCSE not as good.

Posterior Summaries
Parameter

Treat 3
Treat 2
Treat 4
Treat 5

N

10000
10000
10000
10000

Mean

-0.4404
-1.8053
-0.4856
-0.7887

Monte Carlo Standard Errors

Parameter

Treat 3
Treat 2
Treat 4
Treat 5

MCSE

Standard
Deviation

0.4788
0.3304
0.4731
0.5151

Standard
Deviation

Percentiles

25%

-0.7605
-2.0297
-0.8029
-1.1272

50%

-0.4360
-1.8030
-0.4833
-0.7894

MCSE/SD

0.0181
0.00419
0.0204
0.0216

0.4788
0.3304
0.4731
0.5151

0.0378
0.0127
0.0431
0.0419

75%

-0.1178
-1.5815
-0.1696
-0.4423
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Treat 5

Autocorrelation

Diagnostics for Treat_5
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Summary
INormal data: Fixed effects — Bayesian]

* In SAS use the GENMOD procedure if you do not have
any additional random effects.

« Theory says that with uninformative conjugate priors the
results are identical to those from frequentist analysis.

* Posterior means/medians match M.L estimates.
* Credibility intervals match confidence intervals.
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RANDOM EFFECTS MODEL



“Random effects” model

* Now we introduce the what is called the “random
effects” model.

* Up until now the estimated overall treatment effect,
estimates the average effect across this set of studies
weighted by the size of each study.

* If effect is same in all studies then this is a valid estimator.

* If the effects (treatment differences) vary from study then this is
still a valid estimator for this exact weighting of the individual

differences in each trial.

* Here we will look at a more general average across
studies.

- We introduce additional variability at the study level in
terms of the average treatment effects.
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The Statistical model

* Add random effect
« Study I and Arm k, with Treatment t(i,k)

K:k“"N(@ikr Seizk)

O = Wi T Orin) + Nik

where n, has zero mean, independent between studies
with

Cov( Ny, Nin ) = Wiy

[See Jones B, Roger J, Lane PW, Lawton A, Fletcher C, Cappelleri JC et al. Statistical approaches for conducting

network meta-analysis in drug development, Pharmaceutical Statistics 2011, 10, 523-531 ]
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The Statistical model
Usually cannot estimate the many parameters w,,,.

« Symmetry is assumed leading to two possible options
where the i'th study has m, arms (Q is m; by m,).
1) wy = 042 and w,, = 0 if k#h.

this is a simple diagonal matrix.

2) wy = (Mm-1) 0%/2m, = 02/2- 6%/2m,
and w,, = -0%/2m; if k#h.
In this case Q is not of full rank and

Var(n,+n; +...+ny) = 0.
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The Variance-covariance matrix Omega.

* |n both cases we have
Var(n, - ny)= 0°

which is stable across studies however big.

* Model 1 is identical to Model 2 with additional simple

random Study effect with variance o2/2m for a study
with m arms.

« This is important when we decide whether solutions using (1) or
(2) are equivalent or not.
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The two forms.

 For 2 and 3 arm trials

(1)

o2 /2 u]
0 o02%/2

a*/2 0 0
[u /2 u‘

a
0 0 2/2

|

(2)

a* /4
—0% /4

o*/3
—0%/6
—0%/6

—0% /4
o* /4

—0%/6
/3
—0%/6

|

—0%/6
—0%/6
a*/3
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Means of the random effects within
Study are aliased with the fixed effect

for Study.

« Second version of Omega is obtained by simply
subtracting the mean off the random effects within each

trial.

1

N, = My ——

1
p J

i
"Mﬁ
ek

* Option (1) has random effect on top of fixed effect.

« Option (2) obviates this complication for estimation.
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- See Piepho H. P., Williams E. R., and Madden L. V..
2012. The Use of Two-Way Linear Mixed Models in
Multitreatment Meta-Analysis. Biometrics.

for clear detalls of situations where these are
equivalent.

Also contains useful references to early work, such as
De Hoog, F. R., Speed, T. P., and Williams, E. R. (1990). On a matrix

identity associated with generalized least squares. Linear Algebra
and its Applications 127, 449-456.
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Easy way to use model (1)

« Use same approach as the Fixed effect model but add a
random effect on every observation.

« Two possible ways ...

 Fixed on RANDOM statement and estimated on REPEATED
statement.

* Vice-versa.
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Specify known variances on RANDOM

proc mixed data= Parkinsons;

class Study Treatment Record,;

model Y = Study Treatment /solution ddfm=kr ;
random SE / subject=Study*Treatment;

parms 1 1/ HOLD=(1);

Ismeans Treatment / diff=control("1");

run,
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Specify known variances on REPEATED

proc mixed data=Parkinsonstimes4 ;

class Study Treatment;

model Y= Study Treatment / solution ddfm=Kkr;
random intercept /subject=Study*Treatment ;
parms 1 1/ hold=(2);

weight Weight;

Ismeans Treatment / diff=control("1");

run,
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Covariance Parameter Estimates

Cov Parm Subject
SE Study*Treatment
Residual

Covariance Parameter Estimates

Cov Parm Subject
Intercept Study*Treatment
Residual

There is no heterogeneity In these data.

Estimate
1.0000
0

Estimate
0
1.0000
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Easy way to use model (2)
... either frequentist or Bayesian.

«  Within each Study set up three (maximum number of
arms per study) random effects and then use weighted
sums using weights

+ (1-1/m)/~2 on the diagonal
« (-1/m)/~N2  off the diagonal
where m is number of arms for this study.

« Var= 0?[(1-1/m)%/2+ (m-1)/2m?] =(m-1)c?3/2m

« Covariance= o?[( -2*(2(1-1/m) /m) + (m-2)2/m?] = -26?%/m
as required.

Weights ...

Ifm=2:[1/2,-1/2,0]/N2 and [-1/2,1/2, 0 ]2

If m=3: [ 2/3, -1/3, -1/3]N2, [-1/3, 2/3, -1/3]N2, etc. =



Easy way to use model (2)
... either frequentist or Bayesian.

data Revised_data;

set Parkinsons;

by Study;

array x[3]x1-x3;

retain index;

drop i;

if first.study then index=0;

iIndex=index+1;

do i=1to 3;
if i<= narm then x[i]=( (i=index) - (1/narm) ) / sqrt(2);
else x[i]=0;

end,;

run;

+ (1-1/m)/~2 on the diagonal
« (-1/m)/~N2  off the diagonal
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Weights X1, X2 and X3

Record

© 00N O OB~ W NP

S N N
g N W N PP O

Study

~N N oo 01O kDWW w NN PR PR

Treatmen Narm

OO BNDMOWDNNWBRANPNP, WP~

N N DN DN DN DNDNDNDNDNDWWWDNDDNDNDDN

x1

0.35
-0.35
0.35
-0.35
0.47
-0.24
-0.24
0.35
-0.35
0.35
-0.35
0.35
-0.35
0.35
-0.35

X2

-0.35
0.35
-0.35
0.35
-0.24
0.47
-0.24
-0.35
0.35
-0.35
0.35
-0.35
0.35
-0.35
0.35

X3

0.00
0.00
0.00
0.00
-0.24
-0.24
0.47
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

index

N P NDNPEFEP NPEFEPDNPFP OODNEFEPEDNPEPEPDNDPRE
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Easy way to use model (2)
... either frequentist or Bayesian.

proc mixed data=Revised_Data; g’ 0 0
class Study Treatment:; G=0 0% 0
0 0 o°

Model Y =Study Treatment / ddfm=kr;

random X1 X2 X3/ subject=study type=toep(1);
weight Weight;

parms 1 1 /hold=(2);

Ismeans Treatment / diff=control("1%);

run,

Not TYPE=VC would have separate variances and be wrong.
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ML estimate of random effect variance is zero.

Covariance Parameter Estimates

Cov Parm Subject Estimate
Variance Study 0
Residual 1.0000
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REML

By conditioning on the estimators of the fixed effect
parameters, the REML likelihoods are the same for (1)
and (2).

* So estimates and their SEs are the same.

- Similarly, Bayesian analysis with flat priors for Study
fixed effects give identical posteriors for the two different
Omega models.
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Using proc MIXED on full data set
Model (1) using REML.

proc mixed data=Full;

class Study Treatment;

model Response=Study Treatment /ddfm=kr;
Ismeans Treatment / diff=control("1");

random Treatment / subject=Study;

repeated /subject=FullRec group=Study*Treatment;
run;

* [e.g. Whitehead 8§5.8.2]

random Treatment * Study;,
random Treatment / subject=Study;,

random Intercept / subject=Treatment*Study; <€ All three are equivalent 9



There is no extra variability at study level.

Covariance Parameter Estimates

Cov Parm
Study*Treatment
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual
Residual

Residual

Subject

FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec
FullRec

Group

Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment
Study*Treatment

N J9 oo 0 O A W W W DNdMNDND R PR
o & 00 B B Wb WA MNP DD R W

Estimate

e e e
© ® W K W O W

o o b~ U1 © VO VW LV

0

.6307
.2842
.6831
.5551
.3197
.4155
.4420
.0001
.0005
.0203
.0621
.3275
.7449
.1413
.9179
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No observable variation at Study level

* Frequentist accepts this and effectively opts for the
Fixed effects analysis.

» The Bayesian believes his prior and carries on.

* Note there were only 4 d.f. to estimate this study level
variation.
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Lots of fixed effect parameters

... but little data.

Study/Treatment 1 2 3 4 5 Margin
1 -1.22 -1.53 U,
2 -0.7 2.4 L,
3 -0.3 2.6 1.2 U
4 -0.24 -0.59 ™
5 -0.73 -0.18 L
6 2.2 2.5 U
7 -1.8 2.1 U,
Margin 6,=0 5, [oR 5, O
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Profile likelihood for Variance.

Twice logikelihood by Variance

10
11
12

13-

“aq

Code for this plot supplied in course materials. o



Profile likelihood for SD.

Twice logikelihood by Standard Deviation

-10]
1]
121

13

144,

00 01 02 03 04 05 06 07
Standard Deviation

Code for this plot supplied in course materials.
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Version (1) of Omega matrix.

- Same model as for fixed effect except that

Var(Y;) = se,? + 02%/2

where

se,’ is known and 02 needs to be estimated.
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Priors for SD or Variance

* For a Bayesian model we need prior for o2

Uniform for SD is commonly used for variance
components which are not at lowest stratum level.

do = o d(log 0) = d(0%)/20
MCMC procedure:
Prior sd ~ general(0) OR
prior sd ~ uniform(0.001,5)
Winbugs:
sd ~ dunif(0,5)
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Note how flat prior on SD will average over range O up
to about 0.3.

Twice logikelihood by Standard Deviation

-10]
1]
121

13

141 | | | | | | | | | |
00 01 02 03 04 05 06 07 08 09 10
Standard Deviation

Code for this plot supplied in course materials. 01



With flat SD prior, this is what we integrate over.
Likelihood by Standard Deviation

0.036
0.034
0.032
0.030
0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000
0.0 0.1 02 03 04 05 06 0.7 0.8 09 1.0

Standard Deviation
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Winbugs

* Most available code uses version (2) of Q matrix.

« But this is not necessary with flat priors for the study
effects and linear link function.
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Winbugs code from Nice for random
effects.

Sofia Dias, Nicky J Welton, Alex J Sutton, AE Ades.
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# Normal likelihood, identity link. Random effects model for multi-arm trials
model{ # ** PROGRAM STARTS
for(iin 1:ns){ # LOOP THROUGH STUDIES
wli,1] <- 0 # adjustment for multi-arm trials is zero for control arm
delta[i,1] <- 0 # treatment effect is zero for control arm
mul[i] ~dnorm(0,.0001) # vague priors for all trial baselines
for (kin 1:na[i]) { # LOOP THROUGH ARMS
var(i,k] <- pow(se[i,k],2) # calculate variances
precli,k] <- l/varli,k] # set precisions
y[i,k] ~ dnorm(theta]i,k],precli,k]) # normal likelihood
thetali,k] <- mu[i] + delta[i,k] # model for linear predictor
devli,k] <- (y[i,k]-thetal[i,k])*(y[i,k]-thetal[i,k])*precl[i,k] #Deviance contribution
}
resdev[i] <- sum(dev[i,1:na[i]]) # summed residual deviance contribution for this trial
for (k in 2:na[i]) { € This is over complicated!
delta[i,k] ~ dnorm(md[i,k],taud[i,k]) # trial-specific LOR distributions
md[i k] <- d[t[i,K]] - d[t[i,1]] + sw][i,k] # mean of treat effects distributions (with multi-arm trial correction)
taud[i,k] <- tau *2*(k-1)/k # precision of treat effects distributions (with multi-arm trial correction)
wli,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) # adjustment for multi-arm RCTs
swli,k] <- sum(w[i,1:k-1])/(k-1) # cumulative adjustment for multi-arm trials
} }
totresdev <- sum(resdev[]) #Total Residual Deviance
d[1]<-0 # treatment effect is zero for reference treatment
for (k in 2:nt){ d[k] ~ dnorm(0,.0001) } # vague priors for treatment effects
sd ~ dunif(0,5) # vague prior for between-trial SD.

tau <- pow(sd,-2) # between-trial precision = (1/between-trial variance)
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Much simpler code, subtracting mean
random effect (effectively Omega (2)).

# Normal likelihood, identity link
# Random effects model for multi-arm trials
model{ #
for(iin 1:ns){
mul[i] ~dnorm(0,.0001) # vague priors for all trial baselines
for (kin L:nali]) {
var[i,k] <- pow(se[i,k],2) # calculate variances
precli,k] <- 1/varli,k] # set precisions
y[i,k] ~ dnorm(theta]i,k],prec]i,k]) # normal likelihood
theta[i k] <- mu[i] + d[t[i,k]] +delta[i,k] - dsum[i] # model for linear predictor
delta[i,k] ~ dnorm(0,tau)
devlik] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec]i,k] #Deviance contribution

dsumli] <- sum(deltali,1:na[i]])
resdev[i] <- sum(dev[i,1:na[i]]) # summed residual deviance
}
totresdev <- sum(resdev(]) #Total Residual Deviance
d[1]<-0 # treatment effect is zero for reference treatment
for (k in 2:nt){ d[k] ~ dnorm(0,.0001) } # vague priors for treatment effects
sd ~ dunif(0,5) # vague prior for between-trial SD.

tau <- pow(sd,-2) # between-trial precision = (1/between-trial variance)

}
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The NICE results (Bayesian)

Table A9 Parlkinzon example: posterior mean, standard deviatom (zd), median and 9% Credible

mierval (Crl) for both the fixed and random effects models for the treatment effects of Treatments 2 to =

(gh: to diz) relative to Placebo, absolute effects: of Placebo (1) and treatments I to 5 (I: to I:),

heterogeneity parameter v and model fit statistics for different data orpes.

FE model FE model
mean sd median Crl mean sd median Crl
_ _ - Arm-level data: Example & _
dia -1.81 033 -1.81 (-2.46.-1.16) 185 054 -184 (-2.91 -0.85)
d3 -047 049 .047 (-1.43.0.49) 050 066 -050 (-1.78,0.73)
dya -0.52 048  -0.52 (-1.46.,0.43) 053 065 -0353 (-1.77.0.71)
dys 082 052 -0.82 (-1.84.0.22) 083 080 -083 (-2.35,0.69)
T, 073 022 073 (-1.16,-0.30) 073 022 -0.73 (-1.16,-0.30)
T- -254 040 254 (-3.32.-1.76) 258 0358 -257 (-3.72.-1.50)
T, -121 053 -1.20 (-2.25.-0.15) 1.3 070 -1.23 (-2.57.0.10)
T -1.25 053 -125 (-2.28.-0.21) -1.26 069  -126 (-2.57,0.05)
T -1.55 057  -1.55 (-2.66,-043) -1.57 083 -1.56 (-3.14,0.02)
T - - - - 040 043 0.28 (0.01,1.55)
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Winbugs using Omega (1)

... and masses of iterations.

node mean

d2] -1.848

d[3] -0.4978
d[4] -0.5311
d5] -0.8312
sd  0.2822

sd
0.531
0.6629
0.6489
0.8035
0.3166

MC error 2.5% median
0.003018 -2.909 -1.838
0.006444 -1.777 -0.4927
0.007535 -1.781 -0.5287
0.009799 -2.364 -0.8293
0.004325 0.008667 0.1925

[Note sd is V2 smaller due to parameterisation.]

thetali,k] <- mu[i] + d[t[i,k]] +deltali k]
delta[i,k] ~ dnorm(0,tau)

97.5%
-0.8604
0.7522
0.7055
0.6862
1.095

start

10000
10000
10000
10000
10000

sample
990001
990001
990001
990001
990001
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MCMC procedure in SAS

* Tends to get stuck if we do not keep SD away from
Zero.

prior sd ~ uniform(0.001,5) ;

OR better work on the logsd scale

prior logsd ~ general(logsd, upper=log(5)) ;
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Omega (1): Easy way is add on variance.

ods rtf file="&studydir.\output\ex1";
ods graphics on;

proc mcmc data=ParkBayes propcov=quanew nmc=2000000 thin=10 monitor=(P_Treat logsd mysd
) seed=246810;

array P_Study[7] P_Studyl1-P_Study7;

array P_Treat[5] P_Treatl-P_Treatb;

parms P_Studyl-P_Study7 0 P_Treat2-P_Treat5 0 ;
prior P_Studyl-P_Study7 P_Treat2-P_Treat5 ~ general(0);
parms logsd O;

prior logsd ~ general(logsd, upper=log(5));
mysd=exp(logsd);

P_Treat[1]=0;

Mu= P_Study[Study] + P_Treat[Treatment] ;
v=Var+mysd*mysd/2;

model Y ~ normal(mean=Mu, var=v);

run,
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Same as Nice results

Posterior Summaries

Parameter N

P_Treatl
P_Treat2
P_Treat3
P_Treat4
P_Treat5

logsd
mysd

200000

200000

200000

200000

200000

200000
200000

Mean

-1.8505

-0.4990

-0.5280

-0.8302

-1.4638
0.4022

Standard
Deviation

0.5436

0.6781

0.6487

0.8007

1.2239
0.4350

Percentiles

25% 50%

0 0
-2.1345  -1.8399
-0.8872 -0.4928
-0.9103 -0.5248
-1.2696  -0.8255
-2.0871 -1.2810
0.1240 0.2778

5%

0

-1.5498

-0.1055

-0.1427

-0.3831

-0.6448
0.5248
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mysd

Autocaorrelation

Diagnostics for mysd
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- But this does not generalise to case of Binary data.

* Need to introduce the random effect directly.
- That will generalise.
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Omega (1) and random effect. SAS 9.2

proc mcmc data=Parkinsons nmc=2000000 thin=10 monitor=(P_Treat logsd mysd ) seed=246810;
array P_Study[7] P_Studyl1-P_Study7;

array P_Treat[5] P_Treatl-P_Treatb;

array RE[15];

parms P_Studyl-P_Study7 0 P_Treat2-P_Treat5 0 ;

prior P_Studyl-P_Study7 P_Treat2-P_Treat5 ~ general(0);

parms logsd O;

prior logsd ~ general(logsd,upper=log(5));

mysd=exp(logsd)/sqrt(2);

P_Treat[1]=0;

parms RE: /slice;

prior RE: ~ normal(0,sd=mysd);

Mu= P_Study[Study] + P_Treat[Treatment] + RE[record];
model Y ~ normal(mean=Mu, SD=SE);

run,
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Posterior Summaries

Parameter

P_Treatl
P_Treat2
P_Treat3
P_Treat4
P_Treat5
mysd

Monte Carlo Standard Errors

Parameter

P_Treatl
P_Treat2
P_Treat3
P_Treat4
P_Treat5
mysd

N

200000
200000
200000
200000
200000
200000

MCSE

0.0107
0.0166
0.0179
0.0239
0.0116

Mean

-1.8746
-0.5412
-0.5871
-0.9059
0.3867

Standard
Deviation

0.5162
0.6339
0.6087
0.7447
0.3833

Standard
Deviation

0

0.5162
0.6339
0.6087
0.7447
0.3833

Percentiles
25%

0

-2.1502
-0.9129
-0.9552
-1.3229
0.1248

50%

-1.8501
-0.5214
-0.5692
-0.8787
0.2772

MCSE/SD

0.0207
0.0262
0.0293
0.0321
0.0303

75%

-1.5638
-0.1367
-0.1929
-0.4505
0.5212
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/ISLICE option on PARMS statement.

* The /SLICE uses a separate sweep for each random
effect.

* Uses a slice sampler to sample.

* Both the use of SLICE and the increased number of

sweeps of the data make this approach take very much
longer.

« 15 minutes, while the following SAS 9.3 code takes 6 seconds.

- But it does help the mixing of the SD parameter.
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mysd

Autocarrelation

Diagnostics for mysd
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But even easier in SAS 9.3

proc mcmc data=Parkinsons nmc=200000 nthin=20 seed=246810
monitor=(mysd);

random Studyeffect ~general(0) subject=Study init=(0) ;

random Treat ~general(0) subject=Treatment init=(0) zero=first
monitor=(Treat);

parms logsd O;

prior logsd ~ general(logsd, upper=log(5));

mysd=exp(logsd);

random RE ~normal(0,sd=mysd/sqrt(2)) subject=_OBS__ init=(0);
Mu= Studyeffect + Treat +RE;

model Y ~ normal(mean=Mu, sd=SE);

run,
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Results. Fast but need more iterations.

Posterior Summaries

Paramet N

er

mysd 10000
Treat 3 10000
Treat 2 10000
Treat 4 10000
Treat 5 10000

Mean

0.4940
-0.5009

-1.8846
-0.6130
-0.9796

Monte Carlo Standard Errors

Parameter

mysd

Treat_3
Treat_2
Treat 4
Treat 5

MCSE

0.0697
0.0380
0.0462
0.0882
0.1276

Standard Percentiles

Deviation

0.6525
0.7351

0.6800
0.8344
1.1094

Standard
Deviation

0.6525
0.7351
0.6800
0.8344
1.1094

25%

0.1362
-0.9027

-2.1703
-0.9552
-1.3342

50%

0.3019
-0.4901

-1.8466
-0.5455
-0.8442

MCSE/SD

0.1068
0.0517
0.0679
0.1057
0.1150

75%

0.5878
-0.0841

-1.5430
-0.1464
-0.3859
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Treatment not mixing as well

Treat 2

Autocaorrelation

-0.5

Diagnostics for Treat_2
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mysd

Autocaorrelation
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Underlying histogram.

0




Use SGPLOT and not K3D

proc mcmc data=Parkinsons nmc=200000 nthin=20 seed=246810
monitor=(mysd) outpost=outpl;

proc sgplot data=outpl;
histogram mysd /binstart=0.05 binwidth=0.1;
density mysd / type=kernel,
keylegend / location=inside position=topright;

run;

* Need binstart= and binwidth= to get cell to start at zero.
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* May need to include a lower limit for SD as well.
* Monitor the diagnostic graphs.

parms logsd O;
prior logsd ~ general(logsd,

lower=log(0.001), upper=log(b));
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Omega (2)

... 0r 15 random effects and use our X1, X2, X3 trick.
« Here the propcov=gquanew trick works poorly.

 For random effect we use

- SLICE option on the PARMS statement for the random effects
In SAS 9.2.

« RANDOM statement in SAS 9.3
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Set up the three variables X1, X2 and X3.

data Parkbayes;

set Parkinsons;

by study;

retain offset O lastnarm O;

array X[3]x1-x3;

retain index;

if first.study then index=0;

index=index+1;

drop i lastnarm;

if first.study then offset=offset+lastnarm;

lastnarm=narm,;

do i=1to 3;
if i<= narm then x[i]=((i=index)-(1/narm)) / sqrt(0.5);
else x[i]=0;

end; run; 126



proc mcmc data=ParkBayes ntu=1000 nmc=200000 nthin=10 seed=246810 monitor=(P_Treat2-

P_Treat5 logsd mysd);
array P_Study[7] P_Studyl1-P_Study7;
array P_Treat[5] P_Treatl-P_Treatb;
array P_rand[15] P_Rand1-P_Rand15;
array x[3] x1-x3;
parms P_Studyl-P_Study7 0 P_Treat2-P_Treat50 ;
parms P_rand1-P_rand15 /slice;
parms logsd O;
prior logsd ~ general(logsd, upper=log(5));
mysd=exp(logsd);
prior P_Rand: ~ normal(0,sd=mysd);
prior P_Studyl1-P_Study7 ~ general(0);
prior P_Treat2-P_Treat5 ~ general(0);
P_Treat[1]=0;
sum=0;
do i=1 to narm;
sum=sum+x[i]*P_Rand[offset+i];
end;
Mu= P_Study[Study] + P_Treat[Treatment] + sum);

model Y ~ normal(mean=Mu, sd=SE); run;
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Posterior Summaries

Parameter N Mean Standard Percentiles
Deviation 5504 50% 75%

P Treat2 20000 -1.8489 0.5341  -2.1292 -1.8413 -1.5492
P _Treat3 20000 -0.5111 0.6358 -0.8839 -0.4975 -0.1217
P_Treat4 20000 -0.5565 0.6334  -0.9201 -0.5411 -0.1649
P _Treat5 20000 -0.8819 0.7827 -1.2817 -0.8480 -0.4211
logsd 20000 -1.4984 1.1884 -2.1647 -1.3213 -0.6826
mysd 20000 0.3880 0.4171  0.1148 0.2668  0.5053

128



mysd

Autocaorrelation

1.0

0.5

0.0

-0.5

-1.0

10

20

50000

30
Lag

Diagnostics for mysd

100000

[teration

Fosterior Density

e,

40 50

=]

150000

200000

129



Using RANDOM statement

Needs lower bound for logsd prior.

proc mcmc data=ParkBayes nmc=200000 thin=10 seed=246810 monitor=(logsd mysd);
array Xx[3] x1-x3;

array P_Rand[3];

array zero[3] (0,0,0);

parms logsd O;

prior logsd ~ general(logsd,lower=log(0.01) upper=log(5));

mysd=exp(logsd);

random Studyeffect ~general(0) subject=Study init=(0) ;
random Treat ~general(0) subject=Treatment init=(0) zero=first monitor=(Treat);
random P_Rand ~ mvnar(mean=zero, sd=mysd, 0) subject=study ;
sum=0;
do i=1 to narm,;
sum=sum+x[i]*P_Rand[i];
end,
Mu= Studyeffect + Treat + sum;

model Y ~ normal(mean=Mu, sd=SE); run;
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Random effect SD is largish

Posterior Summaries

Parameter

logsd
mysd
Treat_3
Treat 2
Treat 4
Treat 5

N

20000
20000
20000
20000
20000
20000

Mean

-1.1461
0.4825

-0.5309
-1.8723
-0.5416
-0.8274

Monte Carlo Standard Errors

Parameter

logsd
mysd
Treat_3
Treat 2
Treat_4
Treat 5

MCSE

0.1177
0.0669
0.0890
0.0345
0.0757
0.1093

Standard
Deviation
1.0121
0.4326
0.7811
0.5355
0.7279
0.9531

Standard
Deviation

1.0121
0.4326
0.7811
0.5355
0.7279
0.9531

Percentiles
25%
-1.7023
0.1823
-0.8958
-2.1673
-0.9362
-1.3041

MCSE/SD

0.1163
0.1547
0.1140
0.0644
0.1040
0.1147

50%
-1.0082
0.3649
-0.4986
-1.8537
-0.5306
-0.8392

75%
-0.4418
0.6429
-0.0821
-1.5489
-0.0948
-0.3376
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Logsd and SD are not mixing well
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Summary for Bayesian
[INormal data: Random effects]

Use code

parms logsd O;

prior logsd ~ general(logsd,lower=log(0.01) upper=log(5));
mysd=exp(logsd);

but lower limit may not be needed, especially when heterogeneity
exists.

Random effect introduces lots of additional parameters, one for
each record in data set.

- For Normal data simply add variance onto the fixed known residual
and use same code as for fixed effects.

«  We will need to include random effect specifically when we move to
non-Normal data.
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Summary
[INormal data: Random effects]

 Different results between Frequentist and Bayesian,
especially if small observed variability at study level.

« This is to be expected.

- Main difference is the increase in width of Credibility interval
compared to confidence interval.

* For Linear link both models (1) and (2) for Omega give
same results.
« When using REML (Frequentist).
« When using flat priors for Study effect (Bayesian).
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Variability at top stratum.

We now generate an example where the ML estimate
gives a positive variance at trial level.
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Quadruple the Numbers....

« To demonstrate the estimation of study level variability
when it is positive, we modify the current data.

 Assume that each trial arm has 4 times the amount of
data with the same SD.

* This reduces the variabllity at the within study level (due
to sampling within study).

« This increases the estimated variability at the study
level.
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Study Treatment y sd n Difference Se(diff)
[Calculated] | [Calculated]

1 1 -1.22 3.7 4 *54
3 -1.53 4.28 4 * 95 -0.31 0.668/2

2 1 -0.7 3.7 4 %172
2 -2.4 3.4 4 *173 -1.7 0.383/2

3 1 -0.3 4.4 4*76
2 -2.6 4.3 4*71 -2.3 0.718/2
4 -1.2 4.3 4*81 -0.9 0.695/2

4 3 -0.24 3 4*128
4 -0.59 3 4*72 -0.35 0.442/2

5 3 -0.73 3 4 * 80
4 -0.18 3 4* 46 0.55 0.555/2

6 4 -2.2 2.31 4 * 137
5 -2.5 2.18 4*131 -0.3 0.274/2

7 4 -1.8 2.48 4 * 154
5 -2.1 2.99 4*143 -0.3 0.320/2
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Using quadruple data.

Twice REML log-likelihood by Standard Deviation

-10
-11

-12
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0

Standard Deviation 138



Using the quadruple data

REML marginal Likelihood by Standard Deviation

0.032
0.030
0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.0 0.1 02 03 04 05 06 07 08 09 1.0

Standard Deviation 139



Specify known variances on RANDOM

proc mixed data= Parkinsonstimes4,

class Study Treatment Record,;

model Y = Study Treatment /solution ddfm=kr ;
random SE / subject=Study*Treatment;

parms 1 1/ HOLD=(1);

Ismeans Treatment / diff=control("1");

run,
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Specify known variances on REPEATED

proc mixed data=Parkinsonstimes4 ;

class Study Treatment;

model Y= Study Treatment / solution ddfm=Kkr;
random intercept /subject=Study*Treatment ;
parms 1 1/ hold=(2);

weight Weight;

Ismeans Treatment / diff=control("1");

run,
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Covariance parameter estimates

Covariance Parameter Estimates

Cov Parm Subject Estimate
SE Study*Treatment 1.0000
Residual 0.03876

Covariance Parameter Estimates

Cov Parm Subject Estimate
Intercept Study*Treatment 0.03876
Residual 1.0000

0.03876 is variance 02?/2.
So SD for random effect model is V(2 * 0.03876 ) = 0.2784
which matches the REML profile plot.
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Treatment differences.

Differences of Least Squares Means

Standard
Effect Treatment _Treatment Estimate Error DF t Value Pr > |t|
Treatment 2 1 -1.8747 0.2767 3 -6.78 0.0066
Treatment 3 1 -0.5120 0.3249 4 -1.58 0.1902
Treatment 4 1 -0.5314 0.3190 4 -1.67 0.1711
Treatment 5 1 -0.8314 0.3895 3.23 -2.13 0.1161

* Note the very small d.f. from DDFM=KR.
This is because the random effect variance is so poorly estimated.

 When variance is on the boundary at zero KR does not apply
and the d.f. are very large. Variance is assumed known at zero.

« KR is performing close to its limits. Take care when
denominator degrees of freedom go lower than about 3.

* Note that SEDs are smaller than even fixed effects model.

« Although variability pushed up to between study level, it has less impact.
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Note implication.

* If, In contrast, we overestimate the SE within trial then
this will reduce the variability between studies.

« Might be because estimates are based on covariate
adjustments but SEs are not (using raw SDs say).

« Randomization at Centre level without Centre in the model.
* Rounding of source data.

 Although this reduces the between study variability, the
overall impact is conservative, increasing the SED for
Indirect comparisons.
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Summary: Normal data

 Fixed effects.
« Use MIXED or GENMOD.
* Frequentist and Bayesian effectively the same. So why bother!
- Bayes statement on GENMOD makes Bayesian very easy.

« Random effect
« We expect Frequentist and Bayesian to be different.
* Frequentist easy with MIXED or GENMOD using WEIGHT.
- Bayesian easy with the MCMC procedure.

« Use trick of adding variability to residual rather than specify
individual random effects.

* (1) and (2) for Omega are identical for REML or Bayes with flat
priors for Study fixed effect. Use whichever is easiest, usually (1).
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Final message

 The “Random effects” in the casual term “random
effects model” refers to the difference between
treatments.

« The treatment* Study interaction is random.

« Study is treated as a fixed effect.

- This means all information come from with trial and is fully
randomized.

- Beware any analysis (Bayesian or otherwise) where
Study Is treated as a random effect.
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Workshop

 Normal data.



Scott et al

D. A. Scott, K. S. Boye, L. Timlin, J. F. Clark & J.H. Best
(2013)

A network meta-analysis to compare glycaemic control in
patients with type 2 diabetes treated with exenatide
once weekly or liraglutide once daily in comparison with
Insulin glargine, exenatide twice daily or placebo.

Diabetes, Obesity and Metabolism 15: 213-223.



Summary

The paper’s aims:

The glucagon-like peptide-1 receptor agonists (GLP-1
RAS) exenatide once weekly (ExQW) and liraglutide
once daily (QD) are indicated to improve glycaemic
control in patients with type 2 diabetes.

Although glycaemic control with ExQW versus liraglutide
QD 1.8 mg has been directly compared, no studies
have compared ExQW with liraglutide QD 1.2 mg or
determined the probable relative efficacies of various
Injectable therapies for glycaemic control; therefore, a
network meta-analysis was performed to address these
guestions.
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Studies.

e 22 studies.
* 48 records (Study*Treat combinations).

* 6 treatments including Placebo



Actions

* Follow the steps in the handout.

* Program file is Workshop2.sas

 We will discuss our results at the end.



Fixed effects model

Titlel "Fixed effects basic model";

proc mixed data=Scott3 ;

class Study Treatment;

model Y= Study Treatment /ddf=500,500;

weight Weight;

parms 1 /hold=(1);

Ismeans Treatment / diff=control("Placebo") df=500 CL,;

run,



Fixed effect results.

Differences of Least Squares Means
Effect Treatment | Treatmen |Estimate |Standard |DF t Value Pr > || Alpha Lower Upper
t Error

Treatment |Exenatide |Placebo |-0.7900 0.04838 |500 -16.33 <.0001 0.05 -0.8850 -0.6949
BID

Treatment |Exenatide |Placebo |-1.1149 0.06084 |500 -18.33 <.0001 0.05 -1.2344 -0.9954
QW

Treatment |Insulin Placebo |-0.8172 0.06270 |500 -13.03 <.0001 0.05 -0.9404 -0.6940
Glargine

Treatment |Liraglutide |Placebo |-1.0313 0.06926 |500 -14.89 <.0001 0.05 -1.1674 -0.8952
1.2mg

Treatment |Liraglutide |Placebo  |-1.2050 0.05694 |500 -21.16 <.0001 0.05 -1.3169 -1.0931
1.8mg




Random effects model

Titlel "Random effects basic model";

proc mixed data=Scott3 ;

class Study Treatment;

model Y= Study Treatment /ddfm=KR,;

random intercept /subject=Study*Treatment ;
weight Weight;

parms 1 1 /hold=(2);

Ismeans Treatment / CL diff=control("Placebo") L;

run,
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Differences of Least Squares Means

Effect Treatment | Treatment|Estimate |Standard |DF t Value Pr > [t| Alpha Lower Upper
Error

Treatment |Exenatide |Placebo -0.7902 0.06369 21 -12.41 <.0001 0.05 -0.9226 -0.6577
BID

Treatment |Exenatide |Placebo -1.1434 0.08608 18 -13.28 <.0001 0.05 -1.3243 -0.9626
QW

Treatment |Insulin Placebo -0.8241 0.08653 20.6 -9.52 <.0001 0.05 -1.0042 -0.6439
Glargine

Treatment |Liraglutide |Placebo -1.0372 0.09062 21 -11.44 <.0001 0.05 -1.2256 -0.8487
1.2mg

Treatment |Liraglutide [Placebo -1.1880 0.07537 21 -15.76 <.0001 0.05 -1.3448 -1.0313
1.8mg

11




Random effects

Covariance Parameter Estimates

Cov Parm Subject Estimate
Intercept study*Treatment | 0.005891
Residual 1.0000

sqrt(0.005891*2) = 0.1085449
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Select difference with smallest d.f.

Differences of Least Squares Means

Effect Treatment |_Treatment |Estimate Standard DF t Value Pr> [t Alpha Lower Upper
Error

Treatment Exenatide Exenatide 0.3533 0.07047 16.1 5.01 0.0001 0.05 0.2040 0.5025
BID QW

Treatment Exenatide Insulin 0.03387 0.07204 17.6 0.47 0.6440 0.05 -0.1177 0.1854
BID Glargine

Treatment Exenatide Liraglutide 0.2470 0.09730 21 2.54 0.0191 0.05 0.04462 0.4493
BID 1.2mg

Treatment Exenatide Liraglutide 0.3978 0.07740 18.9 5.14 <.0001 0.05 0.2358 0.5599
BID 1.8mg

Treatment Exenatide Placebo -0.7902 0.06369 21 -12.41 <.0001 0.05 -0.9226 -0.6577
BID

Treatment Exenatide Insulin -0.3194 0.07365 12.4 -4.34 0.0009 0.05 -0.4793 -0.1595
QW Glargine

Treatment Exenatide Liraglutide -0.1063 0.1060 16.9 -1.00 0.3300 0.05 -0.3300 0.1174
QW 1.2mg

Treatment Exenatide Liraglutide 0.04458 0.08492 13.2 0.53 0.6083 0.05 -0.1386 0.2278
QW 1.8mg

Treatment Exenatide Placebo -1.1434 0.08608 18 -13.28 <.0001 0.05 -1.3243 -0.9626
QW

Treatment Insulin Liraglutide 0.2131 0.1090 19.2 1.96 0.0653 0.05 -0.01485 0.4411
Glargine 1.2mg

Treatment Insulin Liraglutide 0.3640 0.08975 16.2 4.06 0.0009 0.05 0.1739 0.5540
Glargine 1.8mg

Treatment Insulin Placebo -0.8241 0.08653 20.6 -9.52 <.0001 0.05 -1.0042 -0.6439
Glargine

Treatment Liraglutide Liraglutide 0.1509 0.07331 21 2.06 0.0522 0.05 -0.00160 0.3033
1.2mg 1.8mg

Treatment Liraglutide Placebo -1.0372 0.09062 21 -11.44 <.0001 0.05 -1.2256 -0.8487
1.2mg

Treatment Liraglutide Placebo -1.1880 0.07537 21 -15.76 <.0001 0.05 -1.3448 -1.0313
1.8mg
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Why?

« Strange as it is a comparison with lots of direct links, so
you might expect that the SD will depend less on the
RE.

* But these are studies with large numbers of subject
leading to small SED, where the between study
variation (RE) starts to dominate.

» Here the frequentist approach is helping with
Interpretation.
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The MCMC code.

- Takes much longer to run.

 Using the trick of not defining random effects directly
makes mixing better.

« The SAS 9.3 code is easier.

 The RE SD is well estimated in this example so there is
no difference between frequentist and Bayesian.
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The RE SD is well estimated.

Histogram from the posterior for SD
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NMA METHODOLOGY (CONT.)



BINOMIAL DATA



CASE STUDY WITH BINARY
DATA



Introduction

* Yes/ No outcome.
« Often safety endpoints.
« Most common form of data for indirect comparisons.

* Rare events may introduce difficulties.



Example 1:
Pagliaro et al (1992),
Annals of internal Medicine,117,59-70.

As used in

* Higgins & Whitehead (1996) Borrowing strength from external trials in
meta-analysis. Statistics in Medicine, 15: 2733-2749.

«  Whitehead (2002) Meta-analysis of controlled clinical trials. Wiley.

* Lu & Ades (2004) Combination of direct and indirect evidence in mixed
treatment comparisons. Statistics in Medicine, 23, 3105-3124.

- Jones, Roger, Lane, Lawton, Fletcher, Cappelleri et al. (2011) Statistical
approaches for conducting network meta-analysis in drug development.
Pharmaceutical Statistics, 10, 523-531



Pagliaro et al.

« 26 studies
* Prevention of first bleeding in cirrhosis.

- Compare either two or three nonsurgical treatments (A,
B and C).
- A was the use of Beta-blockers
* B was Sclerotherapy
- C was a Control treatment.

- Data expressed as R events out of N subjects.



* Studies 1 and 2 have three arms

 All the rest compare A to C, or compare Bto C



Pharmaceutical

B. Jones et al. Statistics
___________________________________________________________________________________________________________________________________________|
APPENDIX A. DATASET
Table A.1. Data from [3]. Table arranged to display studies directly comparing A and C on the left side and studies directly
comparing B and C on the right side.
Set 1 Set 2
A C B C
Study Label r n r n Study Label r n r n
1 2 43 13 14 1 g 42 13 41
2 12 68 13 72 2 13 73 13 72
3 4 20 4 16 10 4 18 0 19
4 20 116 30 111 1 3 35 22 36
5 1 30 1 49 12 ] 56 30 53
4] 7 53 10 53 13 ] 16 4] 18
7 18 85 3 89 14 3 23 9 22
2] 2 51 1 51 15 1 49 3 46
1) 8 23 2 25 16 19 53 9 60
17 17 53 26 60
18 10 71 29 69
19 12 41 14 41
20 1] 21 3 20
21 13 33 14 35
22 31 143 23 138
23 20 55 19 51
24 3 13 12 16
25 3 21 5 28
26 5] 22 2 24

 Studies 1 and 2 appear in both set 1 and 2 (3 arm studies)
 Quite large differences in size of study (roughly equal sized arms within).
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Data Betablock1;

An Br Bn Cr Cn

Ar

Input Study

datalines;

41

13
13

42

43

72

16

73

13

68

20

12

111
49

30
11
10
31

116
30
53
85

20

53

89

18

51

11

51

25
19
36

23

18
35

10
11
12
13
14
15
16
17
18
19
20
21

22
30

53

56

18
22
46

16
23
49

31

11
19
17
10
12

60
60
69

53

26
29

53

71

41

14

41

20
35

21

14
23
19
12

33

13
31

138
51

143
55

22
23
24
25
26

20

16
28
24

13
21

22

, run;



Make data vertical (one row per arm)

data betablock3;

set betablockl end=myend,;

by study;
length Trt $ 8;

retain Nreff O NTrtlev O Nstudy O;

drop ar an br bn cr cn Ntrtlev Record Nreff

NStudy;

retain record O;

Narm= (ar+an >0) + (br+bn >0) + (cr+cn >0) ;

arm=

0;

index=0;

if ar+an >0 then do;

end;

arm=arm+1;

r=ar;

n=an;

Trt="A";

ITrt=1;
record=record+1;
index=index+1;

output;

if br+bn >0 then do;
arm=arm+1,;
r=br;
n=bn;
Trt="B";
ITrt=2;
index=index+1,;
record=record+1;
output;
end;
if cr+cn >0 then do;
arm=arm+1,;
r=cr;
n=cn;
Trt="C";
ITrt=3;
index=index+1,;
record=record+1;
output;
end;
Nstudy=Nstudy+1;
Nreff=Nreff+Narm-1;
NTrtlev=max(Ntrtlev,narm);
if myend then do;
call symput("Nrec" record);
call symput("Nreff" ,Nreff);
call symput("NTrtlev",NTrtlev);
call symput("NStudy",NStudy);
end;
run;
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Pagliaro in Vertical format

Trt

Narm Index R

Study

43
42
41
68

13
12
13
13

73
72
20

16
116
111

20

30

30

49
53
53

11

10

11



Statistical overview

The problem falls within the class of generalized linear
models.

But we may need to add random effects.

Generalized mixed models can be fitted and interpreted Iin
two ways:
« Marginal models [e.g. REPEATED statement in proc GENMOD.]

* Subject-specific models. Here the model is defined conditional
upon the random subiject effect.

We follow the second route.
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Fixed effects — Odds ratios

 Logistic regression.
 Logit link function and Binomial distribution.

* |ssues
- Maximum likelihood approach relies on asymptotic results.
« Use EXACT approach with very rare events.
« Often interpreted in terms of LogOdds ratios (LOR).

XB = log |-2X ]
B=log|T— N
Ry (N, —R;)
LOR = lo - XB, — XB
I[N, —Rror,| KPR
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Fixed effects — Relative risk

* Log link function and Binomial distribution.

* |ssues
* Modelled probability can in theory go > 1

« But usually use with Yes/No arranged to give small
probabilities.

Xf =log|R/N|

R, /N
Ry /N,

Log(RR) = log |21 | = X, - X,

14



Generalized linear model (within study)

 Both assume a Binomial distribution for R / N.

 Logistic link or Log link.

- We will later see the use of the complementary log-log as link
function.

* For low rate events such as rare adverse events, both
behave similarly.
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Many people in this area want to contrast direct
Information from indirect information.

For this purpose we will temporarily analyse studies 1
and 2 separately from the rest.

* Note that as there are no estimated variance parameters, this is
possible — no worry about sharing of parameters.
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Ignoring the three arm studies
Logistic fixed effects model (no RE)

proc genmod data=Betablock2 desc;

where Study notin(1,2);

class Study Trt;

model R/N = Study Trt /link=logit dist=Dbin typel,
Ismeans Trt /diff exp cl;

run,
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Logistic removing studies 1 and 2

Differences of Trt Least Squares Means

Trt _Trt Estimate |Standard |z Value |[Pr>|z| Alpha Lower Upper Exponent | Exponent | Exponent
Error iated iated iated
Lower Upper
1 2 0.004680 [0.2208 0.02 0.9831 0.05 -0.4280 |0.4374 1.0047 0.6518 1.5486
1 3 -0.6033 [0.1847 -3.27 0.0011 0.05 -0.9654 [-0.2413 |0.5470 0.3808 0.7856
2 3 -0.6080 [0.1209 -5.03 <.0001 0.05 -0.8450 |-0.3710 |0.5444 0.4296 0.6900

Direct comparisons A-C and B-C

Indirect comparison A-B

18




Fixed effects analysis

Table ll. Estimates (standard errors) on the log odds ratios scale for direct and indirect treatment comparisons.

Direct estimate Indirect estimate Direct estimate MTC estimate Bayesian MTC
Comparison studies studies 3-26 studies 1-2 all studies all studies
A-C —0.603(0.185) — —0.730(0.363) —0.670(0.161) —0.679(0.161)
B—C —0.608(0.121) — —0.234(0.326) —0.553(0.113) —0.559(0.113)
A—B — 0.005(0.221) —0.496(0.371) —0.117(0.18%) —0.120(0.190)

MTC = mixed treatment comparison.

- Traditionally interest has focused on “direct” and “indirect” sources
of information.

* Note how A-B contrast has larger SED as it is mostly estimated
indirectly.

- Bayesian results can be obtained using BAYES statement using
GENMOD;
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Logistic, studies 1 and 2 only

Differences of Trt Least Squares Means

Trt _Trt Estimate |Standard [z Value |Pr>|z| |Alpha Lower Upper Exponent | Exponent | Exponent
Error iated iated iated
Lower Upper
1 -0.4963 [0.3715 |-1.34 0.1816 |0.05 -1.2245 [0.2318 |0.6088 |0.2939 [1.2609
1 -0.7304 |0.3631 |-2.01 0.0442 |0.05 -1.4420 |[-0.01883 |0.4817 |0.2365 [0.9813
2 -0.2341 |0.3259 |-0.72 0.4726 |0.05 -0.8728 |0.4047 |0.7913 |0.4178 [1.4988
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Logistic, all studies together

Differences of Trt Least Squares Means
Trt _Trt Estimate | Standar |z Value |Pr>|z| |Alpha Lower |Upper |Expone |Expone |Expone
d Error ntiated |ntiated |ntiated
Lower |Upper
1 2 -0.1172 10.1892 |-0.62 0.5357 |0.05 -0.4879 |0.2536 |0.8894 |0.6139 |1.2887
1 3 -0.6700 [0.1608 |-4.17 <.0001 [0.05 -0.9852 [-0.3548 |0.5117 |0.3734 |0.7013
2 3 -0.5528 [0.1125 |-4.91 <.0001 [0.05 -0.7733 [-0.3324 |0.5753 |0.4615 |0.7172

bayes diag=all statistics=all NMC=10000 seed=12345;

Sample Differences of Trt Least Squares Means

Trt _Trt N Estimate |Standard [Percentiles Alpha Lower Upper Exponenti |Standard |Percentiles for Lower Upper
Deviation HPD HPD ated Error of |Exponentiated HPD of |HPD of
Exponenti Exponenti [Exponenti
25th 50th 75th e 25th 50th 75th e g
1 2 10000 -0.1239 |0.1919 -0.2518 |-0.1212 |0.00519 |(0.05 -0.4904 |0.2489 0.8998 0.173030 |0.7774 0.8859 1.0052 0.5683 1.2223
1 3 10000 -0.6788 |0.1617 -0.7883 |-0.6813 |-0.5730 (0.05 -0.9873 |-0.3678 |0.5139 0.083560 |0.4546 0.5059 0.5638 0.3726 0.6923
2 3 10000 -0.5549 |0.1145 -0.6265 |-0.5547 |-0.4816 (0.05 -0.7878 |-0.3457 |0.5779 0.066140 |0.5344 0.5743 0.6178 0.4548 0.7077
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Using MCMC procedure SAS 9.3

proc mcmc data=betablock3 nmc=200000 seed=246810;

random Studyeffect ~general(0) subject=Study init=(0) ;

random Treat ~general(0) subject=Trt init=(0) zero=last monitor=(Treat);
Mu= Studyeffect + Treat ;

P=1-(1/(1+exp(mu)));

model R ~ binomial(n=N, p=P);

run;

- Zero=Last makes contrasts compare to Control treatment C.

« Mixes so well no need for thinning.
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Proc MCMC results

Posterior Summaries

Param |N Mean |Standa |Percentiles
eter d o506 [50% |75%
Deviati
on
Treat_ 200000 |-0.6798/0.1622 |-0.7878|-0.6792|-0.5702
A
Treat_ 200000 -0.5597/0.1131 |-0.6356|-0.5597|-0.4830
B
Posterior Intervals
Paramet |Alpha Equal-Tail Interval |HPD Interval
er
Treat_ A |0.050 -1.0024 |-0.3638 -1.0001 |-0.3617
Treat B |0.050 -0.7816 |-0.3371 |-0.7821 |-0.3379
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Fixed effects analysis

Table ll. Estimates (standard errors) on the log odds ratios scale for direct and indirect treatment comparisons.

Direct estimate Indirect estimate Direct estimate MTC estimate Bayesian MTC
Comparison studies studies 3-26 studies 1-2 all studies all studies
A-C —0.603(0.185) — —0.730(0.363) —0.670(0.161) —0.679(0.161)
B—C —0.608(0.121) — —0.234(0.326) —0.553(0.113) —0.559(0.113)
A—B — 0.005(0.221) —0.496(0.371) —0.117(0.18%) —0.120(0.190)

MTC = mixed treatment comparison.

- Bayesian analysis gives very similar results to
maximum likelihood (ML). As expected!

« MTC summarises combination of direct and indirect

comparisons.
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Random effects Binary Data

* This is the truly classic problem.
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Random effects model
« Study I and Arm k, with Treatment t(i,k)

Rix| Nixg~Bin(Nyy, Py)

where n, has zero mean, independent between studies with

Cov( Ny, Nin ) = Wiy

Note Study and Treatment main effects remain as FIXED.
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The Statistical model
Omega as before.

« Symmetry is assumed leading to two possible options

where the i'th study has m, arms (Q is m; by m,).

1) Wy = 042 and w,, = 0 if k#h.

this is a simple diagonal matrix.

2) Wy =02%-0%2m,

and w,, = -0%/2m; if k#h.

27



The two forms for Omega.

 For 2 and 3 arm trials

(1)

(2)

62/2 0 ] o?/4 —o*/4

0 o02%/2 —0*/4 o*/4
/2 0 0 o?/3 —6%/6
0 szz 0 —szﬁ sz?}
0 0 o%/2 —-0%/6 —0?/6

|

—0%/6
—0%/6
a*/3
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Generalized Mixed Models (GLMM)

* In the Normal case the marginal distribution of Y
Integrated over the random effect is known and Normal.

* But with GLMM Frequentist has to use an approximation or use
numerical integration.

« Bayesian can use MCMC with random effects as variables in the
hierarchic model.

* Up until recently these were fitted using Pseudo-Quasi-
likelihood (PQL) algorithms (approximation).
* Does not work well with Binary data and logistic link.
« Useful with Binomial data as long as Normal approximation is OK.

* Can use REML within PQL to allow for estimation of linear model
effects in estimating variance components.
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Generalized Mixed Models (GLMM)

* Favoured approach in GLMM circles is now to use some
form of Gaussian Quadrature (Numerical integration), or
Laplace approximation.

» Used to require NLMIXED, but now can use GLIMMIX.
* But no current equivalent to REML (an issue here).

* S0 now we move to using the GLIMMIX procedure.
* For PQL with REML
* For Gaussian guadrature.
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GLIMMIX — Fixed effects (again)

proc glimmix data=Betablock?2 ;

class Study Trt;

model R/N = Study Trt /link=logit dist=bin ddfm=none;
Ismeans Trt /diff cl oddsratios;

run,

* Logit link and Binomial distribution.

« Use ddfm=none to get equivalent results to GENMOD.
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Fixed effects logistic using GLIMMIX

The GLIMMIX Procedure

Trt _Trt Estimate
1 2 -0.1172
1 3 -0.6700
2 3 -0.5528

Results the same as before.

Standard

Error

0.1892
0.1608
0.1125

DF

Infty
Infty
Infty

Differences of Trt Least Squares Means

Value

-0.62
-4.17
-4.91

Pr > |t]|

0.5357
<.0001
<.0001

Alpha

0.05
0.05
0.05

Lower

-0.4879
-0.9852
-0.7733

Upper

0.2536
-0.3548
-0.3324

Odds

Ratio

0.889
0.512
0.575

Lower
Confidence
Limit for

Odds Ratio

0.614
0.373
0.461

Upper
Confidence
Limit for

Odds Ratio

1.289

0.701
0.717
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So add the random effect as (1)

proc glimmix data=Betablock2 method=RSPL;

class Study Trt;

model R/N = Trt Study/link=logit dist=bin ddfm=none;
random Trt / subject=Study;

Ismeans Trt /diff cl oddsratios;

run;

* This uses PQL algorithm with REML (actually the
default).
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PQL with Omega (1)

Covariance Parameter Estimates

Cov Standard
Parm Subject Estimate Error
Trt Study 0.5813 0.2286

Differences of Trt Least Squares Means
Lower Upper

Confidence Confidence

Standard Odds Limit for Limit for
Trt _Trt Estimate Error DF t Value Pr > |t]| Alpha Lower Upper Ratio Odds Ratio Odds Ratio
1 2 -0.1620 0.4673 Infty -0.35 0.7289 0.05 -1.0778 0.7539 0.850 0.340 2.125
1 3 -0.7364 0.4014 Infty -1.83 0.0666 0.05 -1.5230 0.05034 0.479 0.218 1.052
2 3 -0.5744 0.2814 Infty -2.04 0.0413 0.05 -1.1260 -0.02279 0.563 0.324 0.977

» Note variance is half the variance of treatment difference o2 as specified before and as in
Jones et al. So 02 =1.1626.

« This is slightly less than then median from the Bayesian posterior for SD we get later (1.4).
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Bayes solutions from Jones et al.

Table IV. Estimates: mean (standard deviation) of posterior distribution for log-odds and
median for variance o2, obtained using WinBUGS and the MCMC procedure in SAS.

Whitehead (2002) code Bristol code MCMC in SAS®
A—C —0.784(0.442) —0.784(0.455) —0.783(0.458)
B—C —0.599(0.312) —0.598(0.319) —0.599(0.322)
A—B —0.185(0.515) —0.185(0.531) —0.184(0.535)
Variance (c2) 1.330 1.453 1.458

MCMC, Markov Chain Monte Carlo.

B. Jones et al.
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Gaussian Quadrature with Omega (1)

proc glimmix data=Betablock2 method=QUAD;

class Study Trt;

model R/N = Trt Study/link=logit dist=bin ddfm=none;
random Trt / subject=Study;

Ismeans Trt /diff cl oddsratios;

run,

« Use of NLMIXED gives identical results.
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Gaussian Quadrature with Omega (1)

Covariance Parameter Estimates

Cov Standard
Parm Subject Estimate Error
Trt Study 0.1613 0.06505

Differences of Trt Least Squares Means
Lower Upper

Confidence Confidence

Standard Odds Limit for Limit for
Trt _Trt Estimate Error DF t Value Pr > |t]| Alpha Lower Upper Ratio Odds Ratio Odds Ratio
1 2 -0.1316 0.3021 Infty -0.44 0.6632 0.05 -0.7237 0.4606 0.877 0.485 1.585
1 3 -0.7171 0.2596 Infty -2.76 0.0057 0.05 -1.2259 -0.2082 0.488 0.293 0.812
2 3 -0.5855 0.1814 Infty -3.23 0.0012 0.05 -0.9411 -0.2300 0.557 0.390 0.795

- Estimate of variability much lower.
* Implies Standard errors much smaller. Is this due to using ML?

»  Note variance is half the variance of treatment difference o2 as specified before and as in
Jones et al. So 02 =0.3226, compared to 1.16 before.
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proc glimmix data=Betablock2 Method=MSPL;
Maximum Likelihood with PQL. Omega (1)

Covariance Parameter Estimates

Cov Standard
Parm Subject Estimate Error
Trt Study 0.1529 0.06081

Differences of Trt Least Squares Means
Lower Upper

Confidence Confidence

Standard Odds Limit for Limit for
Trt _Trt Estimate Error DF t Value Pr > |t]| Alpha Lower Upper Ratio Odds Ratio Odds Ratio
1 2 -0.1285 0.2963 Infty -0.43 0.6645 0.05 -0.7093 0.4523 0.879 0.492 1.572
1 3 -0.7037 0.2545 Infty -2.77 0.0057 0.05 -1.2025 -0.2050 0.495 0.300 0.815
2 3 -0.5752 0.1780 Infty -3.23 0.0012 0.05 -0.9240 -0.2264 0.563 0.397 0.797

«  With ML rather than REML the PQL variance estimate is slightly smaller than with
Gaussian quadrature, which is expected from theory.

« 02=0.3058.
«  This should be (partly) fixed by using Omega (2) rather than Omega (1).
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Omega (2) with same trick as for Normal

datajr;

set Betablock?2;

array Xx[3] x1-x3;

doi=1to 3;
if i<= narm then x[i]=sqrt(0.5)*((i=index)-1/narm);,
else x[i]=0;

end,

run,

proc glimmix data=jr method=QUAD;

class Study Trt ;

model R/N = Trt Study/link=logit dist=bin ddfm=none;
random X1 X2 X3 / subject=Study type=TOEP(1) ;
Ismeans Trt /diff cl oddsratios;

run;
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Gaussian Quadrature with Omega (2)

Covariance Parameter Estimates

Standard
ov Parm Subject Estimate Error
ariance Study 1.0246 0.4021

ifferences of Trt Least Squares Means

Standard
rt _Trt Estimate Error DF t Value
2 -0.1590 0.4454 Infty -0.36
3 -0.7402 0.3827 Infty -1.93
3 -0.5812 0.2682 Infty -2.17

Pr > |t|
0.7211
0.0531
0.0302

Alpha
0.05
0.05
0.05

Lower
-1.0320
-1.4902
-1.1068

This is the result in Table Ill of Jones et al.

This is true estimate for 02 (does not need doubling).

Upper
0.7140
0.009772
-0.05563

Odds
Ratio
0.853
0.477
0.559

Lower
Confidence
Limit for
Odds Ratio
0.356
0.225
0.331

Upper
Confidence
Limit for
Odds Ratio
2.042
1.010
0.946
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REML PQL with Omega (2)

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error
Variance Study 1.1626 0.4572

Differences of Trt Least Squares Means
Lower Upper

Confidence Confidence

Standard Odds Limit for Limit for
Trt _Trt Estimate Error DF t Value Pr > |t| Alpha Lower Upper Ratio Odds Ratio Odds Ratio
1 2 -0.1620 0.4673 Infty -0.35 0.7289 0.05 -1.0778 0.7539 0.850 0.340 2.125
1 3 -0.7364 0.4014 Infty -1.83 0.0666 0.05 -1.5230 0.05034 0.479 0.218 1.052
2 3 -0.5744 0.2814 Infty -2.04 0.0413 0.05 -1.1260 -0.02279 0.563 0.324 0.977

« This o?is larger than the one for Gaussian Quadrature as REML corrects for aliasing of
random effect with Study fixed effect but also with Treatment fixed effect.

*  Note that this is the same as 02 =1.162 from REML PQL with Omega (1).

REML has meant that the aliasing of fixed and random effects is automatically handled.
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ML POQL (MSPL) with Omega (2)

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error
Variance Study 0.9949 0.3886

Differences of Trt Least Squares Means
Lower Upper

Confidence Confidence

Standard Odds Limit for Limit for
Trt _Trt Estimate Error DF t Value Pr > |t| Alpha Lower Upper Ratio Odds Ratio Odds Ratio
1 2 -0.1575 0.4397 Infty -0.36 0.7202 0.05 -1.0194 0.7043 0.854 0.361 2.022
1 3 -0.7322 0.3777 Infty -1.94 0.0526 0.05 -1.4726 0.008138 0.481 0.229 1.008
2 3 -0.5747 0.2647 Infty -2.17 0.0300 0.05 -1.0936 -0.05580 0.563 0.335 0.946

«  This o2 is slightly less than that for Gaussian Quadrature with Omega (2) where 02 =1.0246
as PQL slightly underestimates variance.

« Gaussian Quadrature with full REML-like properties is perhaps something for the future, ...
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Frequentist Summary so far

« Well known that with Binomial data where counts are
big enough for Normal approximation to hold, then PQL
with REML is a safe approach.

* Improvement of Guassian Quadrature (GQ) over PQL in
terms of approximation to likelihood, is offset by bias
from fixed effect parameters (no REML).

* In this example PQL behaves much better, even when
using Omega (2) approach than GQ.
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For the future ... Use (I-X(X " X)1X")Z
Instead of Zin G. Quadrature approach.

* Build the X and Z matrices; * Results not saved;
proc glimmix data=newdata OUTDESIGN=Fred;;

class Study Trt;

model R/N = Trt Study/link=logit dist=bin ddfm=none ;
random Trt*study;

run;

proc iml;

use x(keep=_x1- x30); read all into x;
use z(keep=_z1- z54); read all into z;
XX=X"*X;

Z=z-X*ginv(Xx)*x *z;

Create Newz from z; append from z;

quit;

* Need to give the random statement a subject= variable, and will not accept INTERCEPT;
data newdata;

merge Betablock2 Newz;

James=1;

run;
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Need to use Laplace approximation
rather than full G. Quadrature.

proc glimmix data=newdata method=LAPLACE;
class Study Trt;

model R/N = Trt Study/link=logit dist=bin ddfm=none ;
random coll-col54 /subject=james type=toep(l);

run;

The GLIMMIX Procedure

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error
Variance james 0.5700 0.2266

This is the same as 02 =1.14, which is close to RSPL value.

45



This approach is not published.

But might be useful with rare events where PQL
approximation may not hold. [But could go Bayesian,
which is better documented.]
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Should | use DDFM=KR?

* PQL linearises the problem so KR is used on linearised
problem. Allows for fixed effect parameters in estimating
SD.

* Will increase SEs and add d.f. for use with t for CI.s.

« Useful for indicating when SD is not well estimated.

Differences of Trt Least Squares Means

Lower Upper

Confidence Confidence

Standard Odds Limit for Limit for

Trt _Trt Estimate Error DF t Value Pr > |t]| Alpha Lower Upper Ratio Odds Ratio Odds Ratio

1 2 -0.1620 0.4682 21.67 -0.35 0.7327 0.05 -1.1338 0.8099 0.850 0.322 2.248

1 3 -0.7364 0.4021 21.82 -1.83 0.0808 0.05 -1.5707 0.09804 0.479 0.208 1.103

2 3 -0.5744 0.2821 21.2 -2.04 0.0544 0.05 -1.1607 0.01193 0.563 0.313 1.012
was

1 2 -0.1620 0.4673 Infty -0.35 0.7289 0.05 -1.0778 0.7539 0.850 0.340 2.125

1 3 -0.7364 0.4014 Infty -1.83 0.0666 0.05 -1.5230 0.05034 0.479 0.218 1.052

2 3 -0.5744 0.2814 Infty -2.04 0.0413 0.05 -1.1260 -0.02279 0.563 0.324 0.977
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Summary Random effects Frequentist

* Use of Gaussian Quadrature with Omega (2) is
recommended in the Jones et al paper.

*  We now suggest that method=RSPL will behave better
and is much easier as we can use OMEGA(1).

« But beware when the event rate is very small, R=0,1, 2 only or
when N is very small (<10 say).

* | have no evidence that DDFM=KR is dangerous, and should
allow for better estimation of SD, which is often a Bayesian’s
argument against this approach.
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The Bayesian solution

* Nearly all the work in this area has been done using
Winbugs.

- Here we show how to fit the same models using the
MCMC procedure.
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Winbugs

* NICE web site includes code from Bristol group.

« Messy and difficult to read

- Expressed in terms of differences to some overall reference
arm.

« When overall reference does not appear in a study then have a
“local” reference.

- Statisticians do not need this as they simply have several fixed
treatment effects with an arbitrary constraint (usually that one
parameter is zero).

* Much simpler Winbugs code is possible when using
“flat” priors.

50



Issues with MCMC procedure

« SAS 9.3 (SAS/Stat 12)
- Take advantage of the RANDOM statement.

* Both versions
- Use a fast machine, but especially for 9.2.

Ideas the same as for Normal, except need explicit random effects and logistic
link and Binomial error.

P=1-(1/(1+exp(mu)));
model R ~ binomial(n=N, p=P);
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Random effects model (SAS 9.3)

proc mcmc data=betablock3 nmc=200000 seed=246810;

random Studyeffect ~general(0) subject=Study init=(0) ;

random Treat ~general(0) subject=Trt init=(0) zero=Ilast monitor=(Treat);
parms logsd O;

prior logsd ~ general(logsd,lower=log(0.01) upper=log(5));
mysd=exp(logsd);

random RE ~normal(0,sd=mysd/sqrt(2)) subject=_OBS __ init=(0);

Mu= Studyeffect + Treat +RE;

P=1-(1/(1+exp(mu)));

model R ~ binomial(n=N, p=P);

run;
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Random effects solution (MCMC 9.3)

Posterior Summaries

Parameter |N Mean |Standard |Percentiles

Deviation |55, 50% 75%
logsd 200000 [0.1973 |0.2093 0.0572 0.1960 |0.3393
Treat A 200000 [-0.7604 0.4706 -1.0645 |-0.7537 |-0.4527
Treat B 200000 [-0.5773 10.3203 -0.7865 |-0.5782 |-0.3684
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Diagnostics
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Bayesian indirect comparison models

 If we accept flat priors on the linear predictor scale for
fixed effects of treatment and study then Omega (1) and
Omega (2) are identical.
« Use Omega (1) as it is much easier.

* | do not see any reason for
 Informative priors for study
- Study as a Random effect.

... but if you do then Omega(2) is most likely necessary.

So use the following sets of code and amend priors.
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proc mcmc data=betablock3 nmc=200000 thin=20 seed=246810 monitor=(mysd);
random Studyeffect ~general(0) subject=Study init=(0) ;
random Treat ~general(0) subject=Trt init=(0) zero=Ilast monitor=(Treat);
parms logsd O;
prior logsd ~ general(logsd,lower=log(0.01) upper=log(5));
mysd=exp(logsd);
array zero[3] (0,0,0);
array REJ[3];
random RE ~mvnar(zero,sd=mysd/sqrt(2),0) subject=study;
sum=0;
do i=1 to narm;
sum=sum+RE][i]*((i=index) - (1/narm) ) / sqrt(2); € Weighted sum like Yesterday.
end;
Mu= Studyeffect + Treat + sum;
P=1-(1/(1+exp(mu)));
model R ~ binomial(n=N, p=P);

run;
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proc mcmc data=betablock3 nmc=200000 thin=20 seed=246810 monitor=(mysd);

random Studyeffect ~general(0) subject=Study init=(0) ;
random Treat ~general(0) subject=Trt init=(0) zero=last monitor=(Treat);
parms logsd O;
prior logsd ~ general(logsd,lower=log(0.01) upper=Ilog(5));
mysd=exp(logsd);
array zero[3] (0,0,0);
array RE[3];
random RE ~mvnar(zero,sd=mysd/sqrt(2),0) subject=study;
sum=0;
do i=1 to narm;
sum=sum+RE][i]; € Take off the average of the random effects
end;
Mu= Studyeffect + Treat + RE[index] - sum/narm;
P=1-(1/(1+exp(mu)));
model R ~ binomial(n=N, p=P);

run;
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Omega (2) route

* Neither of these mixes well. (See next two slides)

* But we do not need to go down either of these routes.

58



Method 1
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Method 2
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MCSE is larger as one might expect.

Posterior Summaries
Paramet N Mean Standard |Percentiles
er Deviatio |55, 50% 750
n
mysd 10000 [1.1267 |0.2775 |0.9492 |1.1147 |1.3175
Treat A |10000 |-0.7946 |0.4027 |-1.0716 |-0.7788 |-0.5130
Treat B |10000 |-0.6554 |0.2065 |-0.7997 |-0.6592 |-0.5153
Monte Carlo Standard Errors
Parameter MCSE Standard MCSE/SD
Deviation
mysd 0.0698 0.2775 0.2514
Treat A 0.0705 0.4027 0.1750
Treat B 0.0221 0.2065 0.1070
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Summary Binomial data (Bayesian)

 MCMC code is very simple.

« Using SAS 9.3, no need to change program from
application to application as long as variable names,
Study, Trt, R and N remain unchanged.

- Do monitor the diagnostics plots and MCSE.

« Difficult data sets will make mixing difficult and require long runs
with lots of thinning. [See Workshop example.]
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Other forms of Data

 Lastly we consider two further types of source data.

 Count data.

« Time to event .
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COUNT DATA



Poisson data

« Not common in meta-analyses.

« Often total Count of events and Total length of exposure
In each arm, at study level.

* Log link with Log[Exposure] as offset.

- Random effect on Study*Treatment has similar effect as
a random effect for over-dispersion.

* PQL with REML (default RSPL) should work well. Better
than Gaussian Quadrature with Omega (2).

- Bayesian straightforward adaption to MCMC code.
* But...
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Over-dispersion

- But what about over-dispersion?

- Within a trial over-dispersion usually handled by using
estimated scale factor, Negative Binomial distribution,
or a normal random effect on linear predictor.

« Usually represents variability in rate from subject to
subject (frailty).

* This subtlety is sometimes lost in reporting.
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Say we have total Count in each arm in a study and the
relative exposure.

Use Log link function.
Use log(exposure) as offset from arm to arm.

Random effect for frailty should have variance
proportional to 1/N the number of subjects in arm.

Heterogeneity (random effects model) will have similar
random effect but with constant variance.

It is difficult to estimate both from study level data.
Better to use assessment of frailty from within each
study (as with Normal data).

« Dispersion parameter from Negative Binomial.

- Scale parameter if trial uses Poisson with estimated scale.

67



* Negative Binomial

V(Y) = (u + k y?) where k is scale parameter.

Some confusion as r=1/k is often quoted as Negative Binomial
parameter.

Use individual k from each trial, or perhaps share across trials.

GLIMMIX can handle single scale parameter. Not separate for
each trial.

Possibly set SE=sqrt(u + k y?) and treat as Normal with MIXED.

Or use MCMC and have separate Negative Binomial models
with known k for each trial. If SE for k is known include as prior.

- Beware use of simple Poisson regression models.

Underestimating within trial variation will increase between
study variation. But overall it will inflate Type 2 error for RE
model.
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« Perhaps simply use estimate of hazard ratios and
normal approximation. See next section.

- Should we be worrying about over-dispersion in
Binomial data?
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TIME TO EVENT DATA



Time to event data.
Usually modelled in terms of the hazard function.

» The underling model is one of proportional hazard
T is the time of the event.
» f(t) is density function for T.
» F(t) is distribution function for T, F(t fo
» S(t) is survivor function, S(t) =1 — F(t).
» h(t) is hazard function, h(t) = f(t)/5(t).
» H(t) is cumulative hazard function, H(t fo (u)du = —log(5(t)).

So F(t) =1— exp(—H(t))
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Proportional hazards within trial

The hazard for treatment k in trial i is

hi k(t) = hi(t)exp(B)

while the cumulative hazard is

Hik(t) = f; hi(u)exp(Bk)du = Hi(t)exp(Bk)

where h;(t) and H;(t) are the equivalent functions for control arm in trial i.

Then
Fik(t) =1 — exp(—H;(t)exp(5k))
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Hazard data

Nearly always presented as comparison to some internal reference
(placebo). For each comparison to placebo, have estimate of log(hazard
ratio) Yj and its standard error S.

log (hf;:(((t;)) = log(hi(t)) + Bk — log(hi(t)) = Bk

So assume that Yy ~ N((. 5,2;{)

But Yj is not independent of Yj; as both comparisons are made to the
same control in the same study.

So need to treat Y; as Multivariate normal and include the covariance
Cov(Yik, Yii) which is not usually available in the literature.
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Hazard data

Correlation of multiple comparisons to same control
within a trial.

For literature reviewed data, one could approximate the correlation from
the sample sizes.

nn
no + nl)(ng + nz)

Corr(Yik, Yij) = \/(

which will be 0.5 for equal sized arms.
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Easy route

* Build data back to arm level, rather than difference
between arms.

« Treat Study effect as fixed with flat prior (important for
this to work).

» Set Y,=0 for reference arm in this study.

- Set Y= Log Hazard Ratio for treatment | versus
reference.

+ Set SE(Y,)2=SE(LHR)? N,/(N,+N)

while set SE(Y,)? as any of SE(LHR,)?> N/(N;+N.) which
should all be very similar.

Then proceed as for normal data.
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Example: Woods et al,
Mortality in COPD.

Table 1 Count Statistics

Author/Trial (Date) Treatment r (deaths) N (patients)
Boyd (1997) [12] Salmeterol 229
Placebo 227
Calverly/TRISTAN (2003) [13] Fluticasone 4 374
Salmeterol 3 372
SFC 2 358
Placebo 7 361
Celli (2003) [14] Salmeterol 1 554
Placebo 2 270
Table 2 Hazard ratio and log hazard ratio statistics
Author/Trial (Date) Treatment Base HR HR g HRua In( HR) S{E( In( HR) )
Burge/ISOLDE (2000) [15] Fluticasone Placebo 0.76 057 113 -0.276 0203
Calverly/TORCH (2007) [16] SFC Placebo 0817 0.670 0.882 -0.209 0.098
Salmeterol Placebo 0857 0.710 1.035 -0.154 0.096
Fluticasone Placebo 1.056 0.883 1.264 0.055 0.092
SFC Salmeterol 0946 0.777 1.151 -0.056 0.100
SFC Fluticasone 0.768 0.636 0927 -0.264 0.096

Woods, Hawkins & Scott (2010) BMC Med. Res. Methodology, 10:54.

Part of original data from Baker et al (2009) Pharmacotherapy, 29(8)891-905.

76



Combining Time to event with event rate
data.

Frequency data

Here the data are the count of events Rj /Ny in arm k for trial i,
including the control arm 0.

Fic(t) =1 — exp(—Hi(t)exp(Bk)) = 1 — exp(—exp(a; + Bk))
where «; is the log(cumulative hazard) at termination of trial i in the
control arm.

So we model the observed data as

Rix ~ Bin(exp(—exp(a; + (k)), Nik)
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Frequency data

« Use Complementary log-log link with Binomial error.
* Note that this is close to logistic when rate is small.

- But we are assuming a different model from the usual
log-odds-ratio model.
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Computation.
Different types of data.

* In GLIMMIX can we specify distribution and link function
In the data.

* In MCMC we can calculate the log-likelihood directly for
the different types of data and specify using,

Model y ~ general(log likelihood);

* In Winbugs, separate arrays for each type of data, with
associated distribution declarations.
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data LHR;

INPUT Study Trt LHR
SELHR ;
WT=1/(SELHR**2);
Dist=1;

Link=1;

N=1;

Y=LHR;

datalines;

11 0 0.066

12 0.055 0.063

13 -0.154 0.070
14 -0.209 0.072
21 0 0.1435427
22-0.276 0.1435427

run;

data Binary;
input Study TRT R N;
WT=1,;
Dist=3;
Link=5;
Y=R,;
datalines;
33 1229
31 1227
42 4374
43 3372
44 2358
41 7361
53 1554
51 2270

run;
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GLIMMIX (Fixed model)

proc glimmix data=alldata;
class Trt Study ;

model Y/N = Trt study /Dist=BYOBS(Dist) Link=BYOBS(Link) Solution
ddfm=None;

parms 1/ Hold=1;

weight WT,;

estimate "SFC - Placebo" Trt-1100 /CL;
estimate "Sal - Placebo" Trt-1 010 /CL;
estimate "FP - Placebo” Trt-100 1 /CL;
ods output estimates=est;

run;
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Transform back to Hazard Ratios

* Transform back onto the HR scale;
data est2;

set est;

HR=exp(ESTIMATE);
LHR=exp(lower);

UHR=exp(upper);

run,
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Glimmix

Hazard ratio estimates

Label HR LowerHR UpperHR
SFC - 0.77214 0.64125 0.92974
Placebo

Sal - Placebo [0.81568 0.67992 0.97854
FP - Placebo [0.98552 0.83839 1.15848

Table 4 Network meta-analysis results

Comparator Hazard ratio (95% CIl) vs. placebo - fixed effects
Fluticasone 0.99 (0.84, 1.16)

Salmeterol 0.82 (0.68, 0.98)

SFC 0.78 (064, 093)

random effect SD

DIC 2525
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MCMC fixed effects

proc mcmc data=Alldata NBI=10000 NMC=100000 thin=10 Stats=all
mssing=AC seed=12345 monitor=(SFC_Plac Sal Plac FP_Plac);

random Study_eff ~ general(0) subject=study init=(0);
random trt_eff ~general(0) subject=trt zero=first monitor=(trt_eff) init=(0);
mu= Study_eff + Trt_eff ;
if R>= 0 then do;
* Binomial data;
p = logistic(mu);
lI= logpdf("Binomial",r,p,n);
end,;
else do;
* Hazard ratio data,
lI= logpdf("Normal",Ihr,mu,selhr);
end;

model study ~ general(ll);
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array effect[4];
effect[trt]=trt_eff;

beginnodata;

SFC_Plac=exp(effect[4]-effect[1]);
Sal_Plac=exp(effect[3]-effect[1]);
FP_Plac=exp(effect[2]-effect[1]);

endnodata;

run;

Side effect of using RANDOM statement for treatment effect.

Need to copy estimates into an array and then use these to build the
hazard ratios.
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Fixed effects using MCMC

Posterior Summaries

Parameter N Mean Standard Percentiles
Deviation 2504 50% 7504

SFC_Plac 10000 0.7757 0.0731 0.7256 0.7725 0.8233
Sal_Plac 10000 0.8202 0.0764 0.7673 0.8161 0.8701
FP_Plac 10000 0.9895 0.0814 0.9319 0.9864 1.0432
trt_eff 2 10000 -0.0139 0.0822 -0.0705 -0.0137 0.0423
trt eff 3 10000 -0.2026 0.0929 -0.2648 -0.2032 -0.1391
trt_eff 4 10000 -0.2584 0.0942 -0.3208 -0.2581 -0.1944

Table 4 Network meta-analysis results

Comparator Hazard ratio (95% CIl) vs. placebo - fixed effects
Fluticasone 0.99 (0.84, 1.16)

Salmeterol 0.82 (0.68, 0.98)

SFC 0.78 (064, 093)

random effect SD -

DIC 2525




Diagnostics are beautiful.

Diagnostics for SFC_Plac
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Random effects GLIMMIX

proc glimmix data=alldata method=RSPL;;
class Trt Study ;

model Y/N = Trt study /Dist=BYOBS(Dist) Link=BYOBS(Link) Solution
ddfm=KR,;

random intercept /subject=Study*Trt ;
parms 1 1/ Hold=(2);

weight WT;

estimate "SFC - Placebo" Trt-1001 /CL;
estimate "Sal - Placebo"” Trt-1010 /CL;
estimate "FP - Placebo" Trt-1100 /CL;
ods output estimates=estr;

run;
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Without and with DDFM=KR.
Label HR LowerHR UpperHR
SFC - Placebo [0.71404 0.45656 1.11673
Sal - Placebo |0.75436 0.48689 1.16874
FP - Placebo 0.90412 0.62200 1.31419
Label HR LowerHR UpperHR
SFC - Placebo 0.71404 0.04978 10.2415
Sal - Placebo |0.75436 0.04901 11.6119
FP - Placebo |0.90412 0.15717 5.2010
Comparator Hazard ratio (95% CI) vs. placebo - fixed effects Hazard ratio (95% Cl) vs. placebo - random effects
Fluticasone 099 (0.84, 1.186) 0.89 (0.39, 142)
Salmeterol 0.82 (0.68, 0.98) 0.73 (029, 1.23)
SEC 0.78 (064, 0.53) 069 (0.26, 1.21)
random effect SD - 0.36 (0.31)
DIC 2525 25.73
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Always beware KR d.f. That are this small.

Estimates

Label Estimate |Standard [DF |t Value |Pr > |t] |Alpha [Lower |Upper
Error

SFC - -0.3368 |0.2096 |1 -1.61 |0.3544 0.05 |-3.0001 2.3265

Placebo

Sal - Placebo |-0.2819 |0.2152 |1 -1.31 |0.4150 0.05 |-3.0158 |2.4520

FP - Placebo [-0.1008 |0.1826 [1.138|-0.55 |0.6697 0.05 |-1.8504 1.6488
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MCMC [Random effect using SAS 9.3]

parms logsd O;

prior logsd ~ general(logsd, upper=log(5));

mysd=exp(logsd);

random randeff ~ normal(0, sd=mysd/sqrt(2)) subject=_obs_;

mu= Study_eff + Trt_eff + randeff;
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Hazard ratios from random effects model

Posterior Summaries

Parameter N Mean Standard Percentiles

Deviation 2504 50% 7504
SFC_Plac 10000 0.7027 0.2973 0.5372 0.6871 0.8101
Sal_Plac 10000 0.7143 0.2394 0.5672 0.7159 0.8479
FP_Plac 10000 0.8946 0.2659 0.7374 0.8912 1.0259
mysd 10000 0.3918 0.3206 0.1766 0.3115 0.5134

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval
SFC_Plac 0.050 0.2782 1.4113 0.2146 1.2378
Sal _Plac 0.050 0.2525 1.2214 0.1957 1.1397
FP_Plac 0.050 0.4236 1.4752 0.3631 1.3769
mysd 0.050 0.0309 1.2449 0.00793 1.0135
Comparator Hazard ratio (95% CI) vs. placebo - fixed effects Hazard ratio (95% Cl) vs. placebo - random effects
Fluticasone 099 (0.84, 1.186) 0.89 (0.39, 142)
Salmeterol 0.82 (0.68, 0.98) 0.73 (029, 1.23)
SEC 0.78 (064, 0.53) 069 (0.26, 1.21)
random effect SD - 0.36 (0.31)

DIC 2525 2573
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Note that consistent within MCSE.

Monte Carlo Standard Errors

Parameter MCSE Standard MCSE/SD
Deviation

SFC_Plac 0.0224 0.2973 0.0755

Sal Plac 0.0183 0.2394 0.0766

FP_Plac 0.0194 0.2659 0.0729

mysd 0.0288 0.3206 0.0898

Only took 5 seconds so can afford to throw lots of

iterations at It.

93



Mixing was poor

Diagnostics for mysd
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Why it is difficult!

Profiled pseudo log likelihood for SD of random effect
PLE
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Using NBI1=10,000 NMC=1,000,000 thin=10

Posterior Summaries
Parameter N Mean Standard Percentiles
Deviation 2506 50% 75%
SFC_Plac 100000 0.6968 0.3091 0.5446 0.6893 0.8083
Sal_Plac 100000 0.7292 0.2462 0.5884 0.7306 0.8508
FP_Plac 100000 0.8942 0.2988 0.7433 0.8917 1.0178
mysd 100000 0.3772 0.3241 0.1563 0.2944 0.5025
Posterior Intervals
Parameter Alpha Equal-Tail Interval HPD Interval
SFC_Plac 0.050 0.2287 1.2886 0.1418 1.1285
Sal_Plac 0.050 0.2712 1.2538 0.2151 1.1586
FP_Plac 0.050 0.3838 1.4696 0.3250 1.3744
mysd 0.050 0.0200 1.2209 0.00199 0.9997
Comparator Hazard ratio (95% CI) vs. placebo - fixed effects Hazard ratio (95% Cl) vs. placebo - random effects
Fluticasone 099 (0.84, 1.16) 0.89 (039, 142)
Salmeterol 0.82 (0.68, 0.98) 0.73 (029, 1.23)
SFC 0.78 (0.64, 0.93) 069 (0.26, 1.21)
random effect SD 036 (031)
DIC 25.25 25.73
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SFC Plac

Autocorrelation

Diagnostics for SFC_Plac
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mysd

Autocarrelation

Diagnostics for mysd
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Final trick to help mix

parms logsd O /slice;
prior logsd ~ general(logsd, upper=log(5)) ;
mysd=exp(logsd);

random randeff ~ normal(0, sd=1) subject=_obs_;

mu= Study eff + Trt_eff + randeff*mysd/sqrt(2);
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mysd

Autocaorrelation

Diagnostics for mysd
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Improvement in effective sample size

Effective Sample Sizes

Parameter ESS Autocorrelation |Efficiency
Time

SFC_Plac 233.0 42.9210 0.0233

Sal _Plac 233.6 42.8141 0.0234

FP_Plac 299.9 33.3411 0.0300

mysd 435.9 22.9411 0.0436

Effective Sample Sizes

Parameter ESS Autocorrelation |Efficiency
Time

SFC_Plac 175.6 56.9574 0.0176

Sal_Plac 170.3 58.7182 0.0170

FP_Plac 188.2 53.1217 0.0188

mysd 124.1 80.5837 0.0124
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Summary using SAS for indirect
comparisons.

* As long as we express model as a GLMM then we can
use either GLIMMIX or MCMC procedures.

* GLIMMIX

« Preferably use PQL with REML (method=RSPL) but be aware
of the problem with Binary data and also with very small rates
for binomial data.

- MCMC

* Issue of aliasing of fixed and random effects handled
automatically as long as use flat priors for treatment and study.

« The Random statement in SAS 9.3 helps makes code
transparent.
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Summary

« Random effects model have fixed margins for Study
and Treatment but Random interaction.
« This is the source of much of the misunderstandings.

* Use Winbugs if that makes life easy for you.

* But GLIMMIX and MCMC procedures make it easy Iin
SAS.

* GLIMMIX with RSPL will often give good quick answers
without having to mess around with MCMC.
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Some final thoughts. (1)

* Broken networks

* Do not fix them by simply merging trials ( Bad Programmer’s
solution).

* Do not fix by using random study effects ( Bad Statistician’s
solution)

* You cannot bridge.
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Some final thoughts. (2)

« What makes MCMC and Winbugs difficult to control.

« A flat likelihood for the random effect SD near zero.
« A network with a weak bridge.

« What makes GLIMMIX with PQL behave less well.
- Binomial data with very low frequencies.
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WORKSHOP 3



Workshop

- Binary data / Binomial data.

« Here we will experiment with a more complex network.



Cipriani et al

Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins
JP, Churchill R, et al.

Comparative efficacy and acceptability of 12 new-
generation antidepressants: a multiple-treatments meta-
analysis.

Lancet 2009 Feb 28;373(9665):746-758;



Cipriani et al

Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins
JP, Churchill R, et al.

Comparative efficacy and acceptability of 12 new-
generation antidepressants: a multiple-treatments meta-
analysis.

Lancet 2009 Feb 28;373(9665): 746-758;
The acceptability data are used as an example data set in

Interpreting Indirect Treatment Comparisons and Network
Meta-Analysis forHealth-Care Decision Making: Report
of the ISPOR Task Force on Indirect Treatment
Comparisons Good Research Practices: Part 1.

Value in Helath 14 (2011) 417- 428; doi:10.1016/j.jval.2011.04.002



Summary

“Background Conventional meta-analyses have shown
Inconsistent results for efficacy of second-generation
antidepressants.

We therefore did a multiple-treatments meta-analysis,
which accounts for both direct and indirect
comparisons, to assess the effects of 12 new-
generation antidepressants on major depression.”
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Figure 2: Network of eligible comparisons for the multiple-treatment meta-analysis for efficacy (response rate)
The width of the lines is proportional to the number of trials comparing each pair of treatments, and the size of
each node is proportional to the number of randomised participants (sample size). The network of eligible

comparisons for acceptability (dropout rate) analysis is similar.



Studies with Acceptability data.

« 112 studies;
« 226 records (Study*Treat);

12 treatments;



Actions

* Follow the steps in the handout.

* Program file is Workshop3.sas

 We will discuss our results at the end.



Random effects model

Titlel "Random effect with RSPL (proc GLIMMIX)";
proc glimmix data=Cip2 method=RSPL;
class study Treatment ;

model acceptR/DropN = Study Treatment /link=logit
dist=bin ddfm=kr;

random intercept /subject=Study*Treatment ;
Ismeans Treatment /diff=control(‘fluoxetine’) cl oddsratios;

run,



Random effects

Covariance Parameter Estimates

Cov Parm Subject Estimate Standard
Error
Intercept Study*treatm |0.008043 0.009374
ent

sqrt(0.008043*2) = 0.1268306
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Random effects (GLIMMIX)

Differences of treatment Least Squares Means

treatment | treatment |Estimate |Standard |DF t Value Pr>|t| Alpha Lower Upper Odds Ratio [Lower Upper
Error Confidence [Confidence
Limit for Limit for
Odds Odds
Ratio Ratio
bupropion |[fluoxetine [0.1101 0.09692 43.95 1.14 0.2621 0.05 -0.08524 |0.3054 1.116 0.918 1.357
citalopram |[fluoxetine |0.1080 0.1010 51.84 1.07 0.2899 0.05 -0.09471 |0.3108 1.114 0.910 1.365
duloxetine |[fluoxetine |-0.1786 0.1375 44.94 -1.30 0.2005 0.05 -0.4555 0.09829 (0.836 0.634 1.103
escitalopra [fluoxetine |0.1716 0.09308  [53.95 1.84 0.0708 0.05 -0.01505 |0.3582 1.187 0.985 1.431
m
fluvoxamin [fluoxetine |-0.2033 0.1380 103 -1.47 0.1437 0.05 -0.4770 0.07037 |0.816 0.621 1.073
e
milnacipran [fluoxetine |-0.03215 |0.1562 69.31 -0.21 0.8375 0.05 -0.3437 0.2794 0.968 0.709 1.322
mirtazapine [fluoxetine |-0.03296 (0.1136 62.62 -0.29 0.7726 0.05 -0.2600 0.1941 0.968 0.771 1.214
paroxetine [fluoxetine |-0.09970 [0.07216  |39.02 -1.38 0.1750 0.05 -0.2457 0.04627  |0.905 0.782 1.047
reboxetine [fluoxetine |-0.3582 0.1415 55.91 -2.53 0.0142 0.05 -0.6417 -0.07474 |0.699 0.526 0.928
sertraline |[fluoxetine |0.1226 0.08890 (77.63 1.38 0.1719 0.05 -0.05441 |0.2996 1.130 0.947 1.349
venlafaxine [fluoxetine |-0.06394 |0.07687  (62.92 -0.83 0.4087 0.05 -0.2176 0.08967  (0.938 0.804 1.094
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FL

Profiled pseudo likelihood for SD of random effect
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* Now move to MCMC using SAS 9.3
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The run below with 200,000 takes 6 minutes.
Version in program code uses 20,000 (45secs)

proc mcmc data=Cip2 nmc=200000 thin=20 seed=246810 monitor=(mysd OR) outpost=outp1;
random Studyeffect ~general(0) subject=ShortStudy init=(0) ;
random Treat_eff ~general(0) subject=Treatment init=(0) zero=last; * monitor=(Treat_eff);
parms logsd O /slice;
prior logsd ~ general(logsd, upper=Ilog(5));
mysd=exp(logsd);
random RE ~normal(0,sd=1) subject=_OBS __init=(0);
Mu= Studyeffect + Treat_eff + RE*mysd/sqrt(2);
P=1-(1/(1+exp(mu)));
model AcceptR ~ binomial(n=DropN, p=P);
array effect[12];
array OR[12];
effect[trt]=treat_eff;
beginnodata;
doi=1to 12;
* contrasts to fluoxetine;
ORJi]l=exp(effect][i]-effect[5]);
end;
endnodata;

run; 14



Posterior Summaries

Parameter N Mean Standard Percentiles

DEVEC 25% 50% 75%
mysd 10000 0.1219 0.0662 0.0710 0.1217 0.1697
OR1 10000 1.1221 0.1126 1.0432 1.1163 1.1929
OR2 10000 1.1189 0.1159 1.0379 1.1136 1.1937
OR3 10000 0.8424 0.1212 0.7579 0.8333 0.9170
OR4 10000 1.1865 0.1130 1.1067 1.1816 1.2590
OR5 10000 1.0000 0 1.0000 1.0000 1.0000
OR6 10000 0.8225 0.1161 0.7427 0.8126 0.8935
OR7 10000 0.9784 0.1559 0.8675 0.9665 1.0767
OR8 10000 0.9733 0.1125 0.8950 0.9668 1.0441
OR9 10000 0.9066 0.0663 0.8606 0.9038 0.9492
OR10 10000 0.7030 0.1018 0.6310 0.6955 0.7666
OR11 10000 1.1369 0.1054 1.0642 1.1309 1.2029
OR12 10000 0.9394 0.0734 0.8892 0.9363 0.9861
Posterior Intervals
Parameter Alpha Equal-Tail Interval HPD Interval
mysd 0.050 0.00707 0.2511 0.000183 0.2319
OR1 0.050 0.9206 1.3660 0.9115 1.3469
OR2 0.050 0.9072 1.3596 0.9101 1.3619
OR3 0.050 0.6292 1.1000 0.6137 1.0771
OR4 0.050 0.9776 1.4248 0.9625 1.4046
ORS5 0.050 1.0000 1.0000 1.0000 1.0000
ORG6 0.050 0.6207 1.0735 0.6054 1.0538
ORY 0.050 0.7079 1.3115 0.6948 1.2922
ORS8 0.050 0.7736 1.2138 0.7605 1.1964
OR9 0.050 0.7836 1.0457 0.7741 1.0337
OR10 0.050 0.5247 0.9198 0.5153 0.9046
OR11 0.050 0.9491 1.3606 0.9404 1.3473
OR12 0.050 0.8052 1.0930 0.7955 1.0809
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Code SAS 9.2

* Need to add index for Study as well as Treatment.

 The random effect RE has lots of levels.

* Break it's PARMS statement up into several to reduce
dimensionality of Metropolis Hastings.

« The SAS 9.3 solution i1s much faster.
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Case Studies

Co-variable adjustment
Inconsistency

Complex interventions
Multiple outcomes
Multiple follow-up times
Propensity score methods
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Network of comparisons of fluoride
therapies

Placebo

69
% Toothpaste

Mo Treatment

Fig. 1. Network of compansons ot fluonde therapies (T, G, V, and R), pla-
cebo (P), and no treatment (N) showing numbers of trials in which each
pairwise comparison has been made. The size of the lines and nodes 15 pro-
portional to the amount ot available information.




- Effect measure: standardised change in DMFS
(decayed, missing, filled tooth surfaces)



Incoherence

* Direct estimate of effect of toothpaste compared with
rinse: 62,

* Indirect estimate via common placebo comparator:
5’}R — 5’IQP'5112)P

- Incoherence: ¢ = 6R,-51

- In absence of multi-arm trials: ¢ = §2;- 61,

- Variance: var(¢) = var(6/TD\R)- var(6/’T\R)



Estimates of iIncoherence

Evaluation of incoherence in closed loops
Estimates with 95% confidence intervals
Closed loops
NGV -+

NGR : -

hH‘..' i

PTG —— . :

PTY — * Opportunity to observe incoherence
TGV ——- depends on network structure
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TRV 3

hoR . « Power to detect incoherence
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Potential Covariables

(. Salanti er al. /Jowrnal of Clinical Epidemiology 62 (2008) 857 —864 263
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Fig. 4. Distribution of the possible confounding factors: box plots for year of randomization, length of follow-up, and baseline mean caries; percentage of the
studies carried out in populations with fluoridation in the water.



Covariable Regression Model

6 pci = 0'pci + B(Year; — Yeary)

Treatment effect for \

fluoride treatment vs Covariable effects
control (placebo or not common across
treatment) in year O fluoride treatments

8" pei = N(8' pe Thc)

Contrast dependent
random treatment
effects variance.




Effect of Adjustment
Not parameterisation invariant

Only treatment
effects vs, control
are modified

Mo treatment

Y

Placebo
' 1

l.-I
L

Einse

Caries merement
By

. Varnish
Gel

Toothpaste

.

| 960 19710 | D& | 900
Year
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Lumping and splitting: Different assumptions
regarding the equivalence of Placebos

Table 4

Possible assumptions about placebo etfects, and deviance information criteria (DIC) from network meta-analyses based on them

Model Placebo assumption Median 7 DIC

1 All placebos difterent Pr, Pg. Pg, Py 0.18 20.7
2 Gel and vamish placebos equivalent Py, Pg, P =Py 0.18 81.0
3 Gel, varmish, and rinse placebos equivalent Pr, P =Pp =Py (.18 81.8
4 All placebos equivalent Pr=P; =Pp =Py (.18 82.1
5 All placebos equivalent to no treatment N=Pr=P;=Pr=Py 0.19 80.5

Only possible as the network is well connected
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Published online 27 April 2009 in Wiley InterScience
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Addressing between-study heterogeneity and inconsistency in
mixed treatment comparisons: Application to stroke prevention
treatments in individuals with non-rheumatic atrial fibrillation

Nicola J. Cooper]'*'i'i, Alex J. Sutton! ¥, Danielle Morris2,
A. E. Ades®1 and Nicky J. Welton®: |

lDepanmem of Health Sciences, University of Leicester, Leicester LE] 7RH, U.K.
Section of Epidemiology, Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, U.K.
3Academic Unit of Primary Health Care, Department of Community Based Medicine, University of Bristol,
Cotham House, Cotham Hill, Bristol BS6 6JL, U.K.

SUMMARY

Mixed treatment comparison models extend meta-analysis methods to enable comparisons to be made
between all relevant comparators in the clinical area of interest. In such modelling it is imperative that
potential sources of variability are explored to explain both heterogeneity (variation in treatment effects
between trials within pairwise contrasts) and inconsistency (variation in treatment effects between pairwise
contrasts) to ensure the validity of the analysis.

The objective of this paper is to extend the mixed treatment comparison framework to allow for the
incorporation of study-level covariates in an attempt to explain between-study heterogeneity and reduce
inconsistency. Three possible model specifications assuming different assumptions are described and
applied to a 17-treatment network for stroke prevention treatments in individuals with non-rheumatic atrial
fibrillation.

The paper demonstrates the feasibility of incorporating covariates within a mixed treatment comparison
framework and using model fit statistics to choose between alternative model specifications. Although
such an approach may adjust for inconsistencies in networks, as for standard meta-regression, the analysis
will suffer from low power if the number of trials is small compared with the number of treatment
comparators. Copyright © 2009 John Wiley & Sons, Ltd.

KEY WORDS: mixed treatment comparison; heterogeneity; atrial fibrillation
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12. Dipyridamole

0. Ximelagatran

17. Dipyridamole
1. Notreatment / & Low Dose
placebo Aspirin

16. Clopidogrel

& Low Dose 2
Aspirin

8. AlternateDay
) Low Dose

3. Adjusted Aspirin
Standard Dhose
* Anti- coagulant

P

1 2. AdjustedLow

V 1 Dose * Anti- ' :

coagulant : 6. Medium
15. Adjusted Dose Aspirin
Standard Dose

Anti-coagulant 4. Fixed Low
&Triflusal Dose Anti- -=‘-"__"T:
coagulant
13. Fixed Low 14. Fixed Low
Dose Anti - Dose Anti-
coagulant & coagulant &
Low Dose Medium Dose
Aspirin Aspirin

Figure 2. Full treatment network diagram for atrial fibrillation example (box shading indicates treat-

ment class: white = Anti-coagulant, dark grey = Anti-platelet, light grey = Mixed (Anti-coagulant +

Anti-platelet), black = placebo/no treatment). Each treatment strategy is a node in the network. The links

between the nodes are trials or pairs of trial arms. The numbers along the link lines indicate the number

of trials or pairs of trial arms for that link in the network. *In a number of trials clinicians were free in

their choice of oral anti-coagulants: thus adjusted standard and low dose anti-coagulant treatment includes
warfarin, phenprocoumon and acenocoumarol among others.
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Covariable Regression Models

- Different regression coefficient for each comparison
O pk = dax —dap +(Bak—Bap)-Xj

« Exchangeable regression co-efficients
O pic = dax —dap +(Bak—Lap)-X;
Bax~N (8,02,

« Common regression co-efficient
0 pr = dar —dap +5.X;

14



Different Co-efficients

Log odds ratio

ia)

e i e e e ST

rrr ——

COntinwows covarate
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Exchangeable Co-efficients
Shrinkage

Continuous covariate I
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Even more models

Model 1: Mixed treatment comparison with no covariates.

Model 3(a): Exchangeable rreatmemnt x covariate effects across all treatments.

Model 3(b). Exchangeable rrearment x covariate effects within treatment class (i.e. Ant-
coagulant, Anti-platelet, Mixed treatment groups having different interaction mean effects) with a
common variance across class random effects.

Model 3(c): Exchangeable trearment x covariate effects within treatment classes and with the
class interaction distributions having different variances.

Model 4(a): The treatment x covariate effects are identical across all treatment regimes.

Model 4(b): The treatment x covariate effects are 1dentical within treatment classes (1.e. Anti-
coagulant, Anti-platelet, Mixed (Anti-coagulant 4+ Antiplatelet)).

18



Model Comparison

Table II. Model fit statistics.

Model 3(b)
Model 3(a) Exchangeable Model 3(c) Model 4(a) Model 4(b)
Exchangeable freaiment x Exchangeable Same freatment Same treatment
Model (1) freatment x covariate effects freatment x covariate X covariate x covariate effects
Model fit Mo Covariates  covariare effects by class effects by class—diff vars. effects by class
Residual D 00.22 538.74 57.71 57.72 59.97 58.74
deviance®
Effective pD 48.35 43.26 48.88 49.20 49 81 48.25
number of
parameters
Deviance DIC 108.57 106.99 106.60 106.92 10978 106.99
Information
Criteria

*Compared with 60 unconstrained data points.
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Figure 3. Mixed treatment comparison results adjusting for the proportion of patients with previous stroke

or transient ischemic attack—exchangeable treatment x covariate effect within treatment class with same

standard deviation (Key: A—C_std = standard dose anti-coagulant, Asp_med = medium dose aspirin,
Wart_fix + Asp_med — fixed dose warfarin + medium dose aspirin).
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Consistency and inconsistency in
network meta-analysis: concepts and
models for multi-arm studies®

J. P. T. Higgins,>”*" D Jackson,” J. K. Barrett,” G Lu,"
A. E. Ades® and I. R. White®

Meta-analyses that simulkaneously compare multiple treatments [usually referred to as network meta-
analyses or mixed treatment comparisons) are becoming inceasingly commeon. An importamt component of
a network meta-analysis is an assessment of the extent to which different sources of evidence are compatible,
both substantively and statstially. A simple indirect companson may be confounded if the studiesinvolving
ane of the treatmemts of interest are fundamentally differentfrom the studies involving the othe rtreatme nt of
interest. Here, we discuss methods for addressing inconsistency of evidence from comparative studies of
different treatments. We define and review basic concepts of heterogeneity and inconsistency, and attempt
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Definitions of inconsistency

Consistency ( §,. = §,5+650

Heterogeneity
* Variation within a comparison (84p,; # 6a5,;)

Loop inconsistency A
- Differences in treatment
effect modifiers between comparisons
» Average treatment effects
not consistent around loop B

C

Design inconsistency
« Treatment effects vary by study design (design=comparator set)



Observations

« Heterogeneity

Reflects presence of treatment effect modifiers

« Only type of inconsistency if all trials include all comparators

* Loop inconsistency
 Arises because of missing comparators

- Design inconsistency

Design = study level covariate that modifies treatment effects.

Special case of heterogeneity

Not distinguishable from loop inconsistency if all studies two
armed

25% of comparative studies have >2 arms

23



Consistency Model

Main Treatment effect

\

— 6A]

Estimated Treatment effect
for treatment A vs.
Treatment J from study i with
design d

between design variation (aka
inconsistency)
Fixed Effect

Within trial between
design variation
(aka heterogeneity)
Random Effect
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An Example

Trial A B C

A Design
ABC Ref §AB §4c
AB Ref 548 + w4B -

C INe Ref _ 5AC 4 AC
BC Ref S5AB SAC &+ wfc
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Practice of Epidemiology

Mixed Treatment Comparison Meta-Analysis of Complex Interventions:
Psychological Interventions in Coronary Heart Disease

Nicky J. Welton, D. M. Caldwell, E. Adamopoulos, and K. Vedhara

Initially submitted March 14, 2008; accepted for publication January 12, 20089

Meta-analyses of psychological interventions typically find a pooled effect of “psychological intervention” com-
pared with usual care. This answers the research guestion, "Are psychological interventions in general effective?”
In fact, psychological interventions are usually complex with several different components. The authors propose
that mixed treatment comparison meta-analysis methods may be a valuable tool when exploring the efficacy of
interventions with different components and combinations of components, as this allows one to answer the re-
search question, “Are interventions with a paricular component (or combination of components) effective?’ The
authors illustrate the methods using a meta-analysis of psychological interventions for patients with coronary heart
disease for a variety of outcomes. The authors carred out systematic literature searches to update an earlier
Cochrane review and classified components of interventions into 8 types: usual care, educational, behavioral,
cognitive, relaxation, and support. Most interventions were a combination of these components. There was some
evidence that psychological interventions were effective in reducing total cholesterol and standardized mean
anxiety scores, that interventions with behavioral components were effective in reducing the odds of all-cause
mortality and nonfatal myocardial infarction, and that interventions with behavioral and/or cognitive components
were associated with reduced standardized mean depression scores.

Bayesian inference; coronary disease; Markov chain Monte Caro; meta-analysis

Abbreviations: DIC, deviance information criterion; SMD, standardized mean difference.

26



Available Trials

Table 2. Intervention Components by Study Arm®

Mo. of Trial Arms by Outcome With Intervention

Intervention GfAms AliCause Cardiac Mﬂﬂ?ﬁi:ﬂ Total Séls:;gc Diéjls:::ljic Depression Anxi
Mortality  Mortality I:fart:tian Cholesterol Pressure Pressure P ton Anxiely

Usual care only 51 (7) 36 (5) 15 (2) 22 (4) 14 9 9 19 (3) 14
Educational 3(1) 3 (1) 1 1 1 1 1 1(1) 0
Behavioral 6 (2) 6 (1) 4 (1) 5 (2) 2 0 0 1 0
Cognitive 9 (5) 7 (2) 5 (3) 6 (4) 2 2 2 5 (1) 3
Support 1 1 0 0 1 1 1 0 1
Educational + behavioral 3 2 1 2 0 1 1 2 1
Educational + cognitive 5(4) 5(4) 1 2(1) 1 1 1 4 2
Educational + relaxation 2 2 0 0 0 0 0 1 1
Behavioral + cognitive 4 2 1 1 2 0 0 0 0
Behavioral + relaxation 1 1 1 1 0 0 0 0 0
Cognitive + relaxation 2 1 0 1 1 1 1 1 1
Cognitive + suppon 1 1 0 1 0 0 0 0 0
Educational + behavioral + cognitive 2 1 1 1 0 0 0 1 0
Educational + behavioral + relaxation 3(1) 3(1) 0 3(1) 1 0 0 2 2
Educational + behavioral + support 1 2 1 0 1 1 1 0 0
Educational + cognitive + relaxation 2(1) 2(1) 1 1 0 0 0 0 0
Behavioral + cognitive + relaxation 1 0 0 0 0 0 0 1 1
Behavioral + cognitive + support 1 2 0 1 1 1 1 1 1
Educational + behavioral 4 2 0 0 0 1 0 0 0 1

cognitive + relaxation

# Numbers in parentheses indicate the number of arms from 3-arm trials.
27



Models for Intervention Effects

Single effect model (all interventions created equal)

d, =d,

Additive main effects (whole = sum of individual parts)

dr = dgpy X Iysgpy + dgey X Ixopen + -+

2-way interaction model (whole = sum of pairs)

dy = dgpy X Ixysgpy + Agey X Iyspen + Aepu«BEH

X lix>epu,geny +
Full interaction model (each intervention is unique)

dkzdk
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Model Comparison

Table 3. Deviance Information Criterion to Compare Models 1—4 for Each of the Outcomes

Measures, Assuming a Correlation of 0.5 Between Pre- and Postmeasures for the Continuous

Outcomes®
Deviance Information Criterion®
Outcome Model 1 Model 2 (Additive Model 3 (2-Way  Model 4 (Full
(Single Effect) Main Effects) Interaction) Interaction)
All-cause mortality 361.1 360.6 360.9 362.9
Cardiac mortality 160.8 (147.6) 161.2 (150.4) 157.2 (151.7) 157.4 (151.5)
Nonfatal myocardial 243.7 241.0 247.2 244 .4
infarction

Total cholesterol 21.0 20.0 18.7 18.5
Systolic blood pressure 86.3 87.0 87.7 87.6
Diastolic blood pressure 71.0 70.7 70.5 70.5
Depression 121.9 123.5 121.6 123.2
Anxiety 2.4 78.9 82.0 82.1

® The numbers in parentheses for cardiac mortality are obtained after omitting study 5 (Cowan
et al. Nurs Res. 2001;50(2):68-76 (15)). Note that, in this example, there is little power to detect

interaction effects (models 3 and 4).

® The sum of a measure of goodness of fit (posterior mean deviance) and a measure of model

complexity (effective number of parameters).
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Results

Table 4. Posterior Mean and 95% Credible Intervals for the Estimated Intervention Effect for Model 1 and Estimated Componert Effects for Model 2°

Model 1 (Single Effect)

Model 2 (Additive Main Effects)

d Oepy Ogey O Ohel deyp
Outcome Summary 95% 85% 5% 95% 95% 5%
Posterlor  Credible  F9oMOT  Credible  Poc " Credible | ooO  Credible  on®  Credible  osono  Credible
Interval Interval nterval Interval Interval nterval
All-cause mortality Log-odds ratic  ~0.14 —0.47, 0.15 029 027,085 058 113, 005 -001 -052045 038 116,037 021 066, 106
Cardiac mortality® Log-odds ratic  ~0.16 —0.44, 0.07 027 046098 -034 —1.00,030 033 -083.003 003 149153 010 —1.12, 131
Nonfatal myocardial Log-odds ratic  —0.35 —0.65, -0.10 —0.16 071,034 -0.64 -1.13, -0.16 -0.09 -041,028 -0005 -061,057 -1.49 -3.42,0.19
infarction
Total cholesterol, Mean difference 032 —0.50, -0.13 -013 -071,042 -014 -060,033 029 -071,013 049 023,124 005 —0.70, 0.61
mimol/L
Systolic biood Mean difference —1.21 —4.24 233 281 -1284, 718 553 -861,1978 0095 -013,780 007 —17.54, 1650 -0.74 12.38, 11.63
pressure, mm Hg
Diastolic blood Mean difference —1.37 —3.31,0.62 377 1042300 318 -661,1248 089 487,644 239 _1400,943 085 874, 7.40
pressure, mm Hg
Depression SMD 023 035 011 -001 -024 022 —026 -055 002 024 -042, 006 008 -020, 0834 057 —0.07. 121
Anxiety SMD 015 -0.29, 004 -019 -049 014 -002 -0.37,0.34 012 -037,010 002 031,034 004 —0.39,038

Abbreviations: SMD, standardized mean difference; subsecript abbreviations: sed, behavioral intervention; cos, cognitive intervention; eou, educational intervention; reL, relaxation

intervention; sup, psychosocial support intervention.

* Results are shown for the relevant summary measure for each of the outcome measures, assuming a correlation of 0.5 between pre- and postmeasures for the continuous outcomes.
® Besults presernted for the cardiac mortality outcorne omit study 5 (Cowan et al. Nurs Res. 2001:50(2):68—76 (15)).
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Probability of being most effective

Table 5. Proportion of Simulations From Model 2 (Additive Main Effects) in Which Each Component Was the Most
Effective (Had the Lowest Log-Odds Ratio, Mean Difference, or Standardized Mean Difference as Appropriate) for
Each of the Outcome Measures, Assuming a Correlation of 0.5 Between Pre- and Postmeasures for the Continuous
Outcomes

Probability of Being Most Effective

Outcome Usual Care  Educational Behavioral Cognitive Relaxation Psﬁé‘:";fu?fia'
All-cause mortality 0.000 0.009 0.614 0.024 0.316 0.038
Cardiac mortality® 0.000 0.022 0.398 0.207 0.239 0.135
MNonfatal myocardial 0.000 0.010 0.226 0.001 0.007 0.756

infarction
Total cholesterol 0.000 0.194 0.212 0.420 0.012 0.162
Systolic blood pressure 0.004 0.325 0.063 0.195 0.226 0.187
Diastolic blood pressure 0.001 0.465 0.056 0.043 0.317 0117
Depression 0.000 0.039 0.515 0.423 0.015 0.008
Anxiety 0.000 0.483 0.142 0.176 0.075 0.125

* Results presented for the cardiac mortality outcome omit study 5 (Cowan et al. Nurs Res. 2001;50(2):68—76 (15)).
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Mixed treatment comparison with multiple outcomes reported
inconsistently across trials: Evaluation of antivirals for
treatment of influenza A and B

N. L. Wf:lton'-*'i, N. J. C-Clopﬁ:l'z, A. E. Ades!, G. Lu! and A. I. Sutton?

Academic Unit of Primary Health Care, Department of Community Based Medicine, Universiry of Bristol,
Cotham House, Cotham Hill, Bristol BS6 6JL, UK.
XCentre for Biostatistics and Generic Epidemiology, Department of Health Sciences,
University of Leicester, Leicester, UK.

SUMMARY

We present a mixed treatment meta-analysis of antivirals for treatment of influenza, where some trials
report summary measures on at least one of the two outcomes: time to alleviation of fever and time
to alleviation of symptoms. The synthesis is further complicated by the variety of summary measures
reported: mean time, median time and proportion symptom free at the end of follow-up. We compare
several models using the deviance information criteria and the contribution of different evidence sources
to the residual deviance to aid model selection. A Weibull model with exchangeable treatment effects that
are independent for each outcome but have a common random effect mean for the two outcomes gives the
best fit according to these criteria. This model allows us to summarize treatment effect on two outcomes
in a single summary measure and draw conclusions as to the most effective treatment. Amantadine and
Oseltamivir were the most effective treatments, with the probability of being most effective of 0.56 and
0.37, respectively. Amantadine reduces the duration of symptoms by an estimated 2.8 days, and Oseltamivir
2.6 days, compared with placebo. The models provide flexible methods for synthesis of evidence on
multiple treatments in the absence of head-to-head trial data, when different summary measures are used
and either different clinical outcomes are reported or where the same outcomes are reported at different
or multiple time points. Copyright © 2008 John Wiley & Sons, Ltd.

KEY WORDS: Bayesian methods; decision models; evidence synthesis; Markov chain Monte Carlo
simulation; model criticism
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Trial Data

=,

pe- T T -, === =3
Amantadine Oseltamivir Zanamivir
(i a 5
Standard care

Figure 1. Treatment network diagram: each treatment strategy represents a node in the

network. The numbers along the solid lines indicate the number of trials providing direct

information for that link in the network. The dotted lines represent the indirect comparisons
not evaluated in trials, but estimated via the model.
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Disease Model

F':"E Allcwalmn of
{mp’mms

1:1‘.! Model:

Ty A lleviation o Allcvjali®
fever all sy m]:rt/::-‘nﬁ/
\T—E//

(b} Data:

Figure 2. (a) The assumed disease progression model for influenza A and B, where T is the time to

alleviation of fever, and Tp--5 is the time from alleviation of fever to alleviation of all symptoms. (b) The

components of disease progression that we have data on. The data provide information directly on the

transition between influenza and alleviation of fever, Ty, but there is only indirect information on the time

from alleviation of fever to alleviation of all symptoms, Tp-..g, i.e. the difference in time to alleviation of
all symptoms, Ts, and time to alleviation of fever, Tg.
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Time to event models (1)

Time to alleviation of fever:

TF’j’k"’WeibU,ll (aF’j’k, ﬁF,j,k)
Time to alleviation of symptoms:

TS’j’k"’WeibU,ll(aS’j,k, BS,j,k)

Shape parameters constrained to be positive (decreasing
hazard) and exchangeable between study, treatment and
outcome

ar jk As jk~Beta(a,b)
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Time to event models (2)

Symptoms alleviate after fever:

Bs ik = Brjk

Placebo scale parameters unconstrained:

108(3F,j,1) = UFj
log(Bs 1) = ur,j+v;
y; + N(g,v)
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Time to event models (2)

Symptoms alleviate after fever:

Bs ik = Brjk

Placebo scale parameters unconstrained:

108(3F,j,1) = UFj
log(Bs 1) = ur,j+v;
y; + N(g,v)
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Indirect comparison of treatment effects

log scale parameters transitive:
log(Brjx) = Ur,j + OF Kk

log(Bs j k) = Up; +v; + max(0s j x, O jk — Vj)
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Random effects correlated

log scale parameters transitive:

Js, jk ds i 05z OsOFp
Se ~N; d ’ 2
F,jk F.k Os0pp  Of
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Likelihoods

* Median times (e.g. median time until alleviation of
symptoms)
VSR TN (Bs j i (In2) Y #Sik, (sed R ™)?)

* Count data (e.g. number individual symptom-free by day
28)

nS]k Bln(pS]k' J.k

p33 . = E(Pr(Tsjx < 28|yJiSte™)

40



A range of possible models

Table II. Model descriptions.

Maodel

Description

MI1: Correlated treatment effects for fever and
all symptoms, equal random effects variances

M2: Correlated treatment effects for fever and
all symptoms, equal random effects means and
variances

M3: Independent random effects for fever and
all symptoms, with common means but unequal
variances

M4: Independent random effects for fever and
all symptoms, with common means and
variances

M5: Treatment effect equal for fever and all
symptoms for each study.

M4A: Shape parameters independent of study
and treatment

M4RB: Shape parameters equal for fever and all
symptoms, and independent of study and
treatment

M4C: Exponential models for both fever and
all symptoms

M4D: Outcome and study-specific shape
parameters

As described in Section 3.2, setting sg=sp=a:
(55.5.1:) ((ﬂ’s.k) ( o vjﬂ))
. ~Na .
OF, jk, dei) \olp o,
As described in Section 3.2, but setting sg=op=w and dg j =dp ; =d;:

() (G)(5, 7))

As described in Section 3.2, but o5 #£op. and setting ds g =dp ;. =dj:

:?:i ( (5 )

As descnbed in S-ectlon 3 9 but setting og=op=o. p=0and ds j =dp ; =d:

E3‘| J. .t: s>/,
As described in Section 3.2, but setting: dp ; p=dg jp=9d] 3107 ~N(dy, %)

As M4, but with og ~Beta(2, 2); ¢y ~Betai2, 2) priors

As M4, but with s =upF~Beta(2,2) prior

As M4, but with ag=op=1

As M4, but with ag ; 5 ~Beta(l, 1); o j 5 ~Beta(l, 1)
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Meta-analysis of mixed treatment comparisons at multiple
follow-up times

G. Lul*T, A.E. Ades!, A. J. Sutton?, N. J. Cooper?, A. H. Briggs® and
D. M. Caldwell!

'MRC Health Services Research Collaboration, University of Bristol, Bristol, U.K.
2De?paJ"itr.*‘wrfzx of Health Sciences, University of Leicester, Leicester, U.K.
3Section of Public Health & Health Policy, University of Glasgow, Glasgow, UK.

SUMMARY

Mixed treatment comparisons (MTC) meta-analysis is a methodology for making inferences on relative
treatment effects based on a synthesis of both direct and indirect evidence on multiple treatment contrasts.
This is particularly useful in the context of cost-effectiveness analysis and medical decision making. Here,
we extend these methods to a more complex situation where trials report results at one or more, different
yet fixed, follow-up times. These methods are applied to an illustrative data set combining evidence on
healing rates under six different treatments for gastro-esophageal reflux disease (GERD). A series of
Bayesian hierarchical models based on piece-wise exponential hazards is developed that borrow strength
across the MTC networks and also across time points. These include models for absolute and relative
treatment effects, models with fixed or random effects over time, random walk models, and models with
homogeneous or heterogeneous between-trials variation. The deviance information criterion (DIC) is used
to guide model development and selection. Models for absolute treatment effects generate materially
different rankings of the treatments than models that separate the trial-specific baselines from the relative
treatment effects. The extent of between-trials heterogeneity in treatment effects depends on treatment
contrast. In discussion we note that models of this type have a very wide potential application. Copyright
© 2007 John Wiley & Sons, Ltd.

KEY WORDS: Bayesian hierarchical model; MCMC; piece-wise exponential healing time; mixed treat-
ment comparisons; multiple follow-up times; WinBUGS
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Study Network

MIXED TREATMENT COMPARISONS 3687

4 weeks 6 weeks 12 weeks

(a)

(b) 10

Figure 1. (a) Comparison networks at four follow-up times. The figure attached to each edge is the number
of trials making corresponding comparison and (b) Comparison network aggregated over follow-up times.
The figure attached to each edge is the number of trials making corresponding comparison.




Model Options

 Absolute log hazard (ALH) or relative log hazards (LHR);
common across time periods

 Reference treatment response: fixed (F-B), mixed with random
study by time period interaction (M-B), or random walk (RW-B);
varies across time periods

« Treatment effects

— fixed (F-LHR) or random (R-LHR); common across time
periods

— random (R-LHR(t)), or random walk (RW-LHR); varies across
time periods

 Treatment effects variance: Homogeneous (Hom-V) or
heterogeneous (Het-V) between treatments
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lllustrative Study Data
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Absolute log hazard model (ALH)
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Random Walk Baseline

RW-B

Additional
Log
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Per interval
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Random Treatment Effect over Time
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Random Walk Treatment Effect

RW-LHR(t)
VAV BN
Additional >
Log
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Per interval
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Table II. Global goodness of fit measures on 10 models.

Model Main features D pD DIC
1. ALH Hom-V 0k ~Nltg, 02) 410 59 469
2. ALH Het-V O;x ~N(tg, 07) 398 60 458
3. F-B, F-LHR Oju = 1j + vl U=2) + XjpApp 324 50 374
4. F-B, R-LHR, Hom-V Ojk = 1 + vl (W=2) + Xji0jpk
8ipk ~N(dy — dp, %) 271 67 338
5. F-B, R-LHR(r), Hom-V Ujkn =l + vl (u=2) + Xj;{ ﬁjbkn
S;bru ~ N(dy, — dp, v?) 233 82 315
6. M-B, F-LHR Ok = 1t; + (v + G, )T =2) + Xjp Apg 223 69 292
7. ME-B, R-LHR, Hom-V Ojku = 1t + (vu + @, ) (0=2) + Xji0jpi 172 87 259
Sjpk ~N(dy — dp, v?) ‘
8. ME-B, R-LHR, Het-V Ojkw = 1 + (Ve + @) (0=2) + Xjidjpp 165 90 255
'ir'bk ~ N(d; — dp, U[%k}
9. RW-B, R-LHR, Het-V Ojku = Hiy + Xjkfijbk 165 92 257

Hi ~ N 1, ‘E%w], u=2
Ojbku ~N(dk — dp, Vi)
10. ME-B, RW-LHR(1), Het-V O = i + (Vi + 95001 (0=2) + X1 0k 162 92 254
Sipk1 ~ N(dx — dp, v3;)
5jbku ~ N[éjk.u—l . T%W\L uz=2

Note: ALH, absolute log hazard; F-LHR, R-LHR, fixed, random log hazard ratio; Hom-V, Het-V, homogeneous,
heterogeneous between-trials variance; (r), time-dependent random effects; F-B, ME-B, fixed, mixed effect
baselines; RW, random walk.
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Results

Table III. Model 10, mixed effects baseline, with random-walk LHR(7) and
heterogeneous variance.

Average log hazard

Average reduction in
unhealed days

Treatment ratio dy (95 per cent CI) Pr (k is best) (95 per cent CI)
1. Placebo 0 (reference) 0.000 0 (reference)
2. PA 1.499 0.018 19.4
(0.601, 2.415) (6.6, 35.9)
3. HoRA 1.312 0.000 15.4
(0.667, 2.159) (8.4, 25.2)
4. HoRA Double 1.151 0.001 13.2
(0.185, 2.157) (1.7, 27.4)
5. PPI 2.358 0.307 38.0
(1.666, 3.215) (27.8, 49.8)
6. PPI Double 2.421 0.674 39.5

(1.727, 3.272)

(28.8, 51.1)
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Comparative Effectiveness
Without Head-to-Head Trials

A Method for Matching-Adjusted Indirect Comparisons Applied
to Psoriasis Treatment with Adalimumab or Etanercept

James E. Signorovitch,' Eric Q. Wu,' Andrew P. Yu,! Charles M. Gerrits,* Evan Kantor,'
Yanjun Bao,> Shiraz R. Gupta® and Parvez M. Mulani®

1 Analysis Group Inc., Boston, Massachusetts, USA
2 Abbott Laboratories, Abbott Park, Illinois, USA

Abstract The absence of head-to-head trials is a common challenge in comparative
cffectiveness rescarch and health technology assessment. Indirect cross-trial
treatment comparisons arc possible, but can be biased by cross-trial differ-
ences in patient characteristics. Using only published aggregate data, ad-
justment for such biases may be impossible. Although individual patient data
(IPD) would permit adjustment, they are rarely available for all trials. How-
ever, many researchers have the opportunity to access IPD for trials of one
treatment, a new drug for example, but only aggregate data for trials of com-
parator treatments. We propose a method that leverages all available data in
this setting by adjusting average patient characteristics in trials with IPD to
match those reported for trials without IPD. Treatment outcomes, including
continuous, categorical and censored time-to-event outcomes, can then be
compared across balanced trial populations.



Confounding by Trial Heterogeneity

Table I. An hypothetical adjusted indirect comparison with bias due
to differences in patient baseline characteristics

Qutcome Trial of Avs C Trialof Bvs C A vs B®
drugA drugC drugB drugC

Response rates (%) aggregated by arm®

All patients 42.5 125 57.5 17.5 -10
Response rates (%) stratified by baseline severity using IPD
Severe 30 10 20 10 10
Non-severe 80 20 70 20 10

a Difference-in-difference of response rates: (A—C)—(B-C).

b Assuming 75% severe (25% non-severe) in the trial of A vs C and
25% severe (75% non-severe) in the trial of B vs C.

IPD =individual patient data.
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Adjustment based on IPD

* Individual Patient Data (IPD) is available for one trial and
but not another (aggregate data only)

* The trials are ‘'matched’ by re-weighting patients in the
IPD trial by their odds of being enrolled in the trial
without IPD

* Akin to the use of propensity scores in observational
research
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Results

Table Ill. Response rates before and after matching

Week 12 PASI REVEAL/528 REVEAL/528 Leonardi et al.!28! Matching-adjusted indirect
response pre-match post-match comparison (ADA vs ETNP)
ADA PL ADA PL ETN PL
(n=678) (n=347) (n=388)" (n=203)* (n=164) (n=166)
=75% 67.0 4.6 66.5 3.5 49.4 3.6 17.2°
>90% 37.0 1.4 371 0.9 22.0 0.6 14.8"

a Computed from the effective total sample size and proportion in each arm after re-weighting.
b Difference-in-difference of response rates: (ADA —PL in post-match REVEAL/528) — (ETN —PL in Leonardi et al.[28]).
ADA =adalimumab; ETN = etanercept; PASI =Psoriasis Area and Severity Index; PL= placebo; * p <0.001.
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@ Adalimumab 40 mg EOW (post-match REVEAL/528)
B Etanercept 50 mg BIW (Leonardi et al.)

O Placebo (post-match REVEAL/528)

O Placebo (Leonardi et al.)

90 -

80

70 -

60 -

50

40 -

30 -

20

Mean improvement from baseline in PASI scores (%)

Week

Fig. 1. Matching-adjusted mean percentage improvements in Pso-
riasis Area and Severity Index (PASI) scores for etanercept, adali-
mumab and placebo; data obtained from REVEAL,[27) M02-52830]
and Leonardi et al.2® BIW =twice weekly; EOW =every other week.
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Discussion

All examples of adjustment for heterogeneity
More data = more options for adjustment
Individual patient level data is useful

Confidence in the usefulness of the consistency
constraint is essentially an empirical question
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A Dose-Response Meta-Analysis for Quantifying
Relative Efficacy of Biologics in Rheumatoid
Arthritis

JW Mandema!, DH Salinger?, SW Baumgartner®* and MA Gibbs?

We present adose-response meta-analysis to quantify relative efficacy of biologic disease-modifying antirheumatic
drugs (DMARDs) in patientsvrith rheumatoid arthritis (RA). There isa strong rationale for this analysis because, although
multiple biologics are available, information on head-to-head comparisonsis limited. Data onthe paercentage of patients
attaining American College of Rheumatology (ACR) 20, 50, and 70responsesvrere extracted from 50 rand omized
controlled trialsrepresenting 21,500 patients, five mechanisms of action, and nine biologics. The analy sis shovred thatall
tumor nacr osis factor inhibitors @anti-THFs) share the same dose—response relationship for ACR 20, 50, and 70, differing
only in potency. Yet there are significant differences inefficacy among the anti-TNFs due to differencesin the clinical
dose ranges available. Atthe suggested starting dose, golimumab was the least efficacious, folloveed by infliximab,
adalimumab, etanercept, and certolzumab. Significant differences in the dose—response relationship were found
betweenanti-TNFs and other biologics, resulting in differences inefficacy and differential impact of dose titration.

Cer the past 15 years, several biologic disease-modifying + Isthere a difference in relative efficacy across different end
antirheumatic drugs (DMAERD ¢) have become available for points of disease activity such as the American College of
patients with rheurnatoid arthritis (RA ) who had an inadequate Bhenmatolegy (ACE) 20, 50, and 70 response criteriaf

response to traditional nenbiclegic DMARD s such as meth- + Isthe efficacy of anti-TMNFs different in patients with an
otrexate (WTH), sulfazalazine, leflunomide, and antimalarials, inadequate response to MTX as compared with those who



Purpose and methods

- Compare the dose—response relationship for the
efficacy end points ACR 20, 50, and 70 for the clinically
available biologics in adult patients with RA

* A regression method based on dose-response
relationships to account for differences in efficacy as a
function of dose

* increases the precision of the estimated treatment effect at a
particular dose

- differences in treatment effect due to differences in patient
populations can be quantified through parameters of the dose—
response relationship



Clinical evidence

Table1 Summary of available information for each druginduded in the analysis

Trialsfailed Diseasa duration

Drug Trials Patients Doserange DMARD/MTX/anti-TNF  Age (years) {years)
Placebo

No DMARD 7 569 0/7/0 524810 55) 93w 12

MTX or other DIMARD 33 4,408 MTX 16 (8 to 24y mg qw 1/27/5 53 @9to 57) 92ta13)
MTX 8 1,726 18 (15 to 200 mg aqw &/0/0 52 (49to 54) 1{0.5t07)
Abatacept 2] 1,242 10 (0.5 to 10) mgfkg gdw 0/4,2 52 (4610 56) 9(3to13)
Adalimumab ) 2,136 40 (2010 160) mg g2w 1/5/0 54 (52ta 57) 11 {07t 13)
Anakinra 3 949 75 (3 to 162y mg/day 0/3/0 53(d9to 56) 7idtoll)
Certolizumab 4 1,512 200 (200 to 400y mg g2w 0/4/0 52(51to 53) Y (sl
Etanercept 11 2493 25 (0.5 to 500 mg biw 4/7/0 52(48ta 55) 9.7 to 15)
Golimumab 4 1231 100 (50 to 2000 mg qdw 17211 52 @810 58) 7109
Infliximab 7 2,179 6 (2to 200 mg/kg week 0, 2,6; g8w 2/5/0 5247 to 59 $i041t014)
Rituximab 3 707 1,000 (500 to 1,0000 mg week 0, 2 0/2/1 52(51to54) 11Gtol12)
Tocilizumahb 7 2377 82 to 8 mg/kg gdw 1/5/1 51 49to 54) 92to13)
Total 50 21,529 9/36/5 52 4610 59 9410 15)

For continuous variables such as dose, age, and disease duration, the median {range) of values across trials are shown,

biw, twice aweel; DMARD, disease-modifying anti-rheumatic drug; MTX, methotrexate; g 2w, every 2weeaks; gdw, every 4 weeks; qaw, every Busesks; quy, once wask |y

anti-THF, anfi-tumor necrosis factar,



Network diagram
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Figure 1 Network diagram of available direct comparisons. The numbers at the linesindicate the number of trials for each direct comparison. DIMARD,
disease-maodifying antirheumatic drug; MTX, methotrexate.
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Dose-response relationships - Emax

Abatacept Adalimumakb Anakinra
a0 a0
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40 . 40 )
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Figure 2 Estimated vs. observed dose-response relationship for American College of Rheumatology (ACR) 20, 50, and 70 responses in patients with rheumnatoid
arthritis. The symbols represent the observed response incidence in anarm of a trial after adjusting for the between-trial random difference in placebo response

and are color-coded by end point. The size of the symbol is proportional to the precision; a larger symbol indicates a more precise (ie., based on a larger sample
size) observation. The lines are the predicted dose—response relationships for ACR 20 (black), ACR 50 (blue), and ACR 70 (red).



Estimated differences from placebo

Table 2 Estimated mean absolute differencein ACRresponsefromplacebo (patients on background MTX treatment) for the
suggested starting dose of each biclogicin a typical patient population with an inadequateresponse to prior MTX treatment (95% ClI)

Drug Dose Fraquency ACR 20 ACR 50 ACR70
Anakinra 100mg qd 15.56.9t0 204) 95380129 4(1.5tw5.7)
Golimumab 50mg ahw 21.3(15.2t0 26.8) 139(9.1t018.3) 6.2(3.8t0 8.5)
Tocilizumab 4ma/ky qdw 25.7 (14.3t0 28.2) 177 (85t012.8) 82(35t094)
Abatacept 10maskg qdw 27.1(14.5t0 30.3) 188B.6t021.7) 89(.6t0 106)
Infliximab 3ma/kg wk, 2, 6,98w 28.5(23.5t0 32.3) 203(15.5t0 23.7) 97(7t011.8
Adalimumab 40myg q2w 292 (24.8t0324) 209(16.5t023.9 1075t 115
Rituximab 1,000 mg wk, 2 33.2{(12.1t0 374) 25(7t0 293) 126(2.8t0 155)
Etanercept 25myg biw 37.1(32.6to 40) 293(24.1t032.2) 15.5(11.9ta 17.6)
Certolizumab 200mg q2w 40.4 (36.7t0 436) 333(28.5t0369) 184 (14.6t0 21.4)

Typical placebo responseis 24% for ACR 20, B.6%for ACR 50, and 2.7% for ACR 70,

ACE, American College of Rheumatologyresponse; biw, twice a weelk: MTX, methotrexate; g 2w, once every 2 weeks; gdw, once every 4weeaks: g8w, once every Bweeks; ad, dailw



Estimated mean differences from MTX

Table3 Estimated mean absolute difference in ACRresponse from MTX for the suggested starting dose of each biologicin a typical

MTX-naive patient population (95% Cl)

Drug Dose Frequency ACR20 ACR50 ACR70
Golimumab 50mg L& (-163w-34 92 (-149t0-34) -53(-86t0-2.1)
Tocilizumah 4mag/kg S4-17t0-19 —-53{-152t0-19 -32{-87tc-1.1)
Infliximab 3mg'kg Week, 2,6; q8w —2.61(-8.3t026) —27{-83tc 29 1651t 1.9
Adalimumab 40mg =2{-66t02.1) -2 {—671t02.3) -13(-42tc1.5)
Etanercept 25mg 58(1.7t089 65(1.91t0 103) 44(1.3t07.3)

ACR, American College of Rheumatology response biw, twice aweek; Cl, confidenceinterval; MTE, methotrexate g2w, once eveny 2weeks; gdw, once every 4weeks; qBw, once

avery B ueaks,

Table 4 Estimated mean absolute differencein ACRresponse from MTX for the suggested starting dose of each biologicin
combination with MTX in a typical MTX-naive patient population (95% Cl)

Drug Dose Frequency ACR20 ACRS50 ACR70

Golimumab 50mg 1228810 15) 131 @410 17.3) 84(57t012.2)
Infliximab 3ma/kg wk, 2, 68w 15512610 176) 17.4 (1410 209 1.688t015.4
Adalimumab 40mg 15.7 (12810 1/.8) 17.7 (14.410 21.2) 1.9&1ta15.7)
Etanercept 25mg 121(15.910 21.2) 22.5(18.910 26) 15.86(12610200

ACR, American College of Bheumatology response; biw, tuwice a week; MTXK, methotraxate; g 2w, once every 2wesks; gdwy, once every 4 wieeks: g Buy, once every Bweeks.,



Inadequate response to MTX MTH naive

#® Plcosbo ACRZ0
& Adalimumab ACRED
- E%rh:llizumtab ACRTO
x nercep

204 e Golimumab v B0 - '
¥ Infliximab

Fercent achieving ACRH response

=
-

CoseEDSs0

Figure 4 Estimated vs. observed normalized dose-response relationships
for tumor necrosis factor inhibitors, stratified by trialsin which patients had
an inadequate response to prior treatment with methotrexate (MTX) (left
panel) and trials in MTX-naive patients (right panel). The symbols represent
the ohserved response incidence inan arm of a trial after adjusting for the
between-trial random difference in placebo response and are coded by
end pointand drug. The dose is expressed as dose/ED ., (dose required to
achieve 50% of maximum effect). The size of the symbol is proportional

to the precision; a larger symbol indicates a more precise (ie, basedona
larger sample size) observation. The lines are the predicted dose—response
relationships for American College of Rheumatology (ACR) 20 (black), ACR 50
{blue), and ACR 70 {red) responses.
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Summary

« The dose-response relationships for ACR 20, 50, and
70 were quantified for the clinically available biologic
DMARDs.

* The dose-response-based meta-analysis provided
Insights into the relative efficacies across the different
mechanisms of action and among the five anti-TNFs.

* Head-to head comparative trials are needed to confirm
these results.
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NMA IN PHASE 2/3



Hypothetical — phase 3 existing data

Treatment Control

Drug 1 PBO |
Drug 1 PBO B
Drug 2 PBO L

Drug 2 PBO B
Drug 3 PBO -

Drug 4 PBO .

Drug 4 PBO B
Drug 5 PBO B

| | | | |
0.25 0.50 0.75 1.00 1.20

Relative risk (< 1 favors treatment)
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Simulate competitor key trial results

Treatment
Drug 1

Drug 1

Drug 2

Drug 2

Drug 3

Drug 4

Drug 4

Drug 5
Competitor 1

Competitor 2
Competitor 2

Control

PBO
PBO
PBO
PBO
PBO
PBO
PBO
PBO

PBO
PBO
PBO

[ I I I 1
0.25 0.50 0.75 1.00 1.20

Relative risk (< 1 favors treatment)
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Simulate indirect comparisons for future
competitors

PBO N

Drug 1 B

Drug 2 N

Drug 3 N

Drug 4 .
Drug 5 B
Competitor 1

I I I I I I
0.50 0.75 1.00 1.30 2.00 3.00

Relative risk (< 1 favors Competitor 2)
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Simulate power for Competitor 2

PBO

Drug 1

Drug 2

Drug 3

Drug 4

Drug 5
Competitor 1

Worst Case

Expected

Best Case

O

O

I
0

I I I I
20 40 60 80

I I I I I I
0O 20 40 60 80 100

Power

I I I I I I
0O 20 40 60 80 100
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Summary

- Simulating NMAs in phase 2/3 can improve trial designs

* Preliminary NMAs can enable the impact of competitor
data to be considered

* Preliminary NMAs aid the planning for comparative
effectiveness activities required for reimbursement

17



NMA FOR HTA - DENOSUMAB
(PROLIA®) OSTEOPOROSIS
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Results of indirect and mixed treatment comparison of fracture
efficacy for osteoporosis treatments: a meta-analysis
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Becerved: 22 February 2012 FAccepted: 4 Tune 2012
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Abstract

Summary Network mefa-analysis techniques (meta-analysis,
adjusted indirect comparison, and mixed treafment compari-
son [MTC]) allew for freafment comparisens inthe absence of
head-to-head trials. In this study, conditional estimates of
relative treatment efficacy derived through these techniques
shew mportant differences in the fracture risk reduction pro-
files cfmarkefed phamnacclogic therapies for pestmencpausal
ostecporosis.

Electronic supplementary material The onling version ofthis article
[(doi:10 10070158012 20DER -0y containe supplementary material,
which is avalable to authonzed users.

M. Freemantle (B3

Department of Primary Care and Population Health, University
College London,

London MW3 2PF, UK

£-mal: nicholas. feernantled@uel acuk

Introduction This study illustrates how network meta-
analyzis techniques (metfa-analysis, adjusted indirect com-
parisor, and MTC) can provide comparisens of the relative
efficacy of postmencpausal cstecporesis theraples in the
absence of comprehensive head-to-head frials.

Methods Source articles were identified in MEDLINE;
EMEBASE; Cochrane Cenfral Register of Controlled Trials
(CENTEAL) via Wiley Interscience; and Cumulative Index
to Nursing and Allied Health Literature (CINAHIL) befween
April 28 200% and November 4, 2003 Two reviewers
identified English-language arficles reporting randemized
controlled frials (RCTs) with on-label dosing of marketed
cetecporesis agents and fracture endpoints. Trial design,
population characteristics, mtervention and comparator,
fracture cufcomes, and adverse events were abstracted for
analysis. Primary analyses ncluded data fromn BCTs with
fracture endpoints. Sensitivity analyses alse included studies
with fractures reported through adverse event reperts. Meta-
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Denosumab (Prolia®) NICE Health
Technology Assessment (HTA)

http://quidance.nice.org.uk/TA/Wave20/75

Initial NICE scoping meeting Jan 2009
UK HTA core team created May 2009

Systematic review protocol created Jun 2009
* Initial search completed

Research Project Plan created Oct 2009

Final NICE Scope issued in Nov 2009
* Final and updated systematic review completed

HTA submitted Jan 2010
Preliminary recommendations (ACD) May 2010
Final guidance (FAD) Oct 2010

20



http://guidance.nice.org.uk/TA/Wave20/75

Flow of citations through review
proceSS * 6328 citations initially

identified from MEDLINE,

404 reports / 211 studies 2 additional denosumab studies identified EMBASE, Cochrane,
from original review and via bibliography searching CINAHL
updates combined (Kendler 2009 and Brown 2009)
| ]
¥ _ Exclusion criteria
213 studies
included Publication Type/ Study Design
> « 2 citations with abstract only data,15
h 4 citations with open-label design
196 studies
included
. Study Population
3 4 + 31 citations with GIOP, 14 citations with
A8 =iiee men, 5 citations with previously treated
included
R Study Intervention
N » 7| + 1citation with intervention excluded (PTH),
: 20 citations with off-label dosing,16
1??;33%'55 citations with 2 active treatments combined
> Study Comparator
¥ « 16 citations where comparator not
92 studies evaluated and no placebo control
included
> Study Outcome
4 » 45 citations with non-fracture related
34 studies included outcomes, 10 citations reporting fractures
for indirect and mixed not evaluated, 3 citations where raw data
treatment comparison not extractable
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Evidence network diagram - new
vertebral fracture example

Raloxifene )=~

Strontlum ........................... ....:?: Denosw

1 Trial

2 Trials

Teriparatide
‘ |3 Trials

/

1 Trial
Zoledronate )} 1 Trial p=— Placebo
---------- Indirect analysis

"/ Risedronate

4 Trials .

2 Trials

1 Trial —— Ibandronate

Head-to-head study

Alendronate

/2 TriaIS....'/ Etidronate
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Fracture meta-analysis, adjusted IC & MTC:
Comparators

« Comparators
« Strontium
» Raloxifene
« Teriparatide
» Zoledronate

* Oral BP
* Alendronate
* Risedronate
- Etidronate
 |bandronate
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Fracture meta-analysis, adjusted IC & MTC:
Endpoints

* Five main fracture types
« Morphometric vertebral fractures
 Clinical vertebral fractures
* Nonvertebral fractures
 Hip fractures
« Wrist fractures

« ‘Other’ fractures was also investigated but no consistent
definition was available across studies or publications

24



Fracture meta-analysis, adjusted IC & MTC:
Analysis sets

* Primary analysis — evaluable population for
morphometric vertebral fractures, ITT for others

« Sensitivity analysis
« ITT Population (morphometric vertebral fractures only)

« All trials, including trials where fractures were captured as
adverse events

« All trials, including trials where fractures were captured as
adverse events but excluding trials with additional sources of
bias

25



Fracture meta-analysis, adjusted IC & MTC:
Output Requirements

- Comparative efficacy section of the NICE Single

Technology Assessment (STA)
« Meta analysis of fracture data for each comparator relative to a

common control (placebo)
 Adjusted indirect comparison for Dmab vs. comparator

* Mixed treatment comparison
« Comparator vs. placebo
* Dmab vs. comparator

 Input parameters for economic model
* RR for each comparator vs. placebo

« Subgroup analysis (t-score, age, prev fracture)

26



Fracture meta-analysis, adjusted IC & MTC:
Available data for analysis (morph)

E o % "E % % % O "E
s 5 5 85 5 5 5 TS g
= & 5 22 § B 3§ £ zZ_ &8
: : T S5 ® @ T = L o = s f ®
# of trials Trials o B o - 2F 9 I @ O =20 4
1 Cummings 2008 FREEDOM Study X X
heunier 2004 SOT] Study
2 Feginster 2005 TROPOS Study i ,
MORE Study
(Group 1)
Ettinger 1999 1 MORE Study
Ettinger 19599 2 (Group 2)
Lufkin_1995 Lufkin_1995
4 Morii 2003 Marii 2003 X X
1 Meer 2001 FPT Study ki *
1 Black 2007 HORIZOMN Study X X
Bone 1997 Bone 1997
Curson_ 2001 Dwurson_ 2001
Black_ 1956 FIT | Study
4 Cummings 1998 FIT | Study A A
Harris_ 13999 YERT MA Study
2 Feginster 2000  ERT MM Study * A
Herd 1997 Herd 1997
2 Viatts 1950 Watts 1990 * *
1 Chestnut 2004  BONE Study AR

# denotes the treatments compared
lbandronate oral 1s 2.5
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Indirect Treatment Comparison

 Method

- Step 1: Perform meta analysis with a common comparator, i.e. placebo
« Step 2: Approach of Bucher et al adopted for RR

Log RR of indirect comparison of A and B is

Standard error is
SE(INRR,g) = V[SE(INRR )2 + SE(INRRy.)?]

Bucher HC, Guyatt GH, Griffith LE and Walter SD. The Results of Direct and Indirect Treatment Comparisons in Meta-Analysis of
Randomized Controlled Trials. J Clin Epidemiol. (1997) 50 (6); 683-691.
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Mixed Treatment Comparison

« Method

Conducted in Winbugs with standard parameters

Based on OR methods in Lu and Ades (2004) and updated for relative
risk

Method allows for check of heterogeneity of control arms

Zero count in one arm acceptable, but not in both arms
Non-informative priors used throughout

29



Mixed Treatment Comparison

*  Modelling

Data Study Trt  Count  Total
1 1 4 85
1 9 6 90
2 2 78 981
2 9 145 965

Model For study 1

r, ~ binomial(p;, n;)

Ln(p) = i, (control)
Ln(p;) = p, + delta, (exp)

delta, ~ norm( [d;-dg] , T2)

Results Estimates for d,, d, d; d,, d:,dg d-, dg, dg
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Testing for heterogeneity

Due to the small number of trials for each comparator, heterogeneity
was statistically assessed by the 12 statistic and is presented in forest
plots

The independent predictors of fracture risk assessed are trial level
mean age, proportion of subjects with a prevalent vertebral fracture
and mean BMD

Meta-regression techniques were used to investigate the relationship
between the trial level covariates and trial level placebo fracture rate,
RD and RR for the primary analysis set

The estimate and significance level of each covariate are
summarised
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Direct evidence

Direct Comparison with Placebo - Morphometric Vertebral Fracture Risk
Fixed Effects Meta Analysis

(Primary Analysis)
Placebo Controlled Trials
Com parison RR (95% CI)
Denosumab 0.325 (0.256, 0.412) L
S trontium 0.737 (0.662, 0.820) —a—
Raloxifene 0.648 (0.539, 0.781) —_—
Teriparatide 0.347 (0.218, 0.553) <4+—=
Zoledronate 0.300 (0.239, 0.376) <4+——8—
A lendronate 0.564 (0.462, 0.687) —
Risedronate 0.619 (0.499, 0.768) . E—
E tidronate 0.464 (0.165, 1.307) < L]
Ibandronate Oral(2.5) 0.506 (0.344, 0.744) L
\ \
0.25 0.50 1

RR =Relative Risk, Cl =Confidence Interval
RR <1 favours comparator



Adjusted indirect evidence

Adjusted Indirect Treatment Comparison - Morphometric Vertebral Fracture Risk
Fixed Effects Meta Analysis

(Primary Analysis)

Adjusted Indir ect Com parison
Com parison RR (95% ClI)
Denosumab vs. S trontium 0.441 (0.339, 0.573) L
Denosumab vs. Raloxifene 0.501 (0.370, 0.678) L
Denosumab vs. Teriparatide 0.936 (0.554, 1.581) L
Denosumab vs. Zoledronate 1.083 (0.779, 1.505) L
Denosumab vs. Alendronate 0.576 (0.422, 0.786) L]
Denosumab vs. Risedronate 0.525 (0.380, 0.725) L
Denosumab vs. E tidronate 0.700 (0.242, 2.024) < L 4
Denosumab vs. Ibandronate Oral(2.5) 0.642 (0.408, 1.011) L

\ \

0.25 0.50 1



Assessing sources of heterogeneity

Morphometric Vertebral Fracture - Placebo Response Rate vs. Mean Age

w IN I
a [S) a
| |

O

w
o
|

Placebo r esponse r ate (%)
5 & 38 B
| | |

[$2]
|

o
O
O

50 55 60 65 70 75 80 85

Mean Age (Y ears)

The size of the circles are propational to the inverse variance
Regression Lineis estimated using meta regression
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Assessing sources of heterogeneity

Morphometric Vertebral Fracture - Relative Risk vs.Mean Age

3.5

3.0 o

2.5

2.0

1.5

Relative Risk

1.0

0.5

0.0

50 55 60 65 70 75 80 85

The size of the circles are propational to the inverse variance
Regression Line is estimated using meta regression



Assessing sources of heterogeneity

Morphometric Vertebral Fracture - Placebo Response Rate vs.Mean BMD

[ IN A
a o 5
|

O

w
=}
!
O

Placebo r esponse r ate (%)
= [ N N
o (8] o (6]
l l l

[65]
|

o
|

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

The size of the circles are propational to the inverse variance
Regression Line is estimated using meta regression
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Assessing sources of heterogeneity

Morphometric Vertebral Fracture - Relative Risk vs.Mean BMD

3.5

3.0 o

2.5

2.0

Relative Risk

1.5

1.0

0.5

0.0

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

The size of the circles are propotional to the inverse variance
Regression Line is estimated using meta regression
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Summary

* NMAs for reimbursement take time
« Opportunities to take some work off the critical path

- Additional analyses required

* NMA protocol can accommodate multiple
reimbursement agency needs

* Presentation and reporting of NMAs is important
« Assumptions and technical details should be documented
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NMA FOR HEALTHCARE
DECISION MAKING



Prohlem

» Individual patient data (IPD) in one tnal {or a set of trials) vs.
published aggregate data (AD] in another trial (or a set of trials)

» Due to different inclusion fexclusion criteria, background populations
may ditfer resulting in significant differences in crucial
covariates/confounders

» How to adjust IPD data with appropriate weights so that the
covariates are matched to perform indirect comparisons
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Matching Adjusted Indirect Comparison

» Example 1: James E Signorovitch, et al. Comparative effectiveness
without head-to-head trials: a method for matching-adiusted indirect
comparisons applied to psoriasis treatment with adalimumab or
etanercept. Pharmacoeconomics, 28(10):035-045, 2010.

41



Example-1: Selection of IPD

Match inclusion/exclusion criteria

@-o O-&

IPD (528)
BSA>5%
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Example-1 Matching Baseline

Baseline characteristics before and after matching

REVEAL/23

Pre-mateh Past-mateh 20021639
EBaseline characteristic nazz 1025 nzx102% n==330
Age mean ESD}, y 438 (132} 452 {11.6) 452 (116)
Age 6By % 6.4 5.5 5.5
Male % 6t 1 4.0 4 {)
White % 59 8 RN RN
Crueatian af psariasis mean (S0, v 183 {120} 185 (118 185 ({11%}
Faariatic arthritis % 26 8 224 2249
Friar systemic ar phatatherapy % fo 2% 76 0 76 0
Invaved BSA mean (S0}, % 2548 (150% 293 (183} 2973 (193}
FASI (S0} 188 (64 183 (84 183 (84
Dermatatagy e quality index mean (S0} 115({&7 121 (71 121({71

*p < 008 far comparisans between pre-mateh HBumia and Enbret using t-tests far cantinuaus
vartables and chi-squared tests far categarical variables.
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Example-1 Comparison of Qutcomes

The matching-adjusted indirect comparison estimator was applied to the
comparison of Humira and Enbrel in eflicacy outcomes described in

Leonardi et al. [2003]

Response rates before and after matching

REVEAL/R33E
Fre-mateh Fast-match 221634 Mg — Hug
Week 12 PASI Fib Hum Fib Hum Fib Enb
[Fan] b 03] ¢ bt hud4 7 nazhfy nzxd47 b ¥R nzz 166 n:z 164
FASITR, % 4 6 &7 15 &8 & 16 4% 4 17 2%
EASI9), %G 14 37 {) 4 371 {1 & Ly 14 8%

Ag. Hum-FIb Ay Enb-FIb. Fp < 008
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Summary

* Increasing use of NMA to conduct comparative
effectiveness assessments (CEA)

* Need to be able to review and critigue a CEA

 Likely will need to replicate analyses
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Workshop 4 — NMA opportunities

 Using private collection

» What opportunities do you have to conduct NMA in your
role/company?

» Is NMA a regular consideration in your drug development
activities? If not, what could you do to influence this?

» How well understood is NMA in your company? Are there
opportunities to increase the understanding via educational
materials/seminars?

» Write-down an action plan you can take back on
following up on NMA opportunities
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NMA IN HTA AGENCY
METHODOLOGY GUIDELINES



NICE Methods Guide (April 2013)

Reference case should contain H2H trials
NMA if required is additional to base case

NMA will increase uncertainty associated with the lack
of direct evidence

Use best practices for meta-analyses

Network should contain all interventions/comparators
Included in the scope
« Clear methods explaining selecting trials

Present how direct and indirect evidence compare

Present results using tabular and graphical displays
* Present direct evidence separate from NMA



US Agency for Healthcare Research and
Quality (AHRQ)

- Study identification from searches of at least 2 databases and
supplementary measures

« Greater weight to studies looking at clinical endpoints rather than
surrogate endpoints

- All indirect analyses accompanied by sensitivity analysis for
robustness assessment

- Random effect methods preferred unless small studies results
systematically differ from larger studies results

- Effect measure preference
- Binary outcome — OR or RR
« Continuous outcome — actual or standardised mean difference

« Time to event outcome — HR (with verification of proportionality
assumption in the trials)



Canadian Agency for Drugs and
Technologies in Health (CADTH)

- Emphasise need to assess similarity of trials for
patient/methodological factors and date of the trial

 Trials included must have high external validity

« Can include Mixed Treatment Comparisons, but
preference for IC — need to assess inconsistency
between direct and indirect evidence

« Random effects methods can be used

* |C methodology based on OR, using anything else
needs elaboration

* If no statistical difference found, suggest calculating the
power of the IC to detect a difference



Australian Pharmaceutical Benefits
Advisory Committee (PBAC)

« Clear justification for inclusion of trials, and they all must have high
external validity

 Can use random effects methods if more than 1 trial has evaluated
a pair of treatments

« Meta regression is possible if at least 10 trials have measured the
covariate

« Sensitivity analyses assess impact of including any controversial
trials

- Effect measure preference
Binary outcome — RR
Continuous outcome — actual or standardised mean difference
Time to event outcome — HR

* Reporting an IC — treatment effect for each RCT, pooled estimate
for each paired comparison, and indirect estimate of treatment
effect of interest



Australian PBAC Working Group

« Expanded version of PBAC recommendations

« Use multiple measures of treatment effect — for binary
outcome
* Risk difference
* Number needed to treat
* QOdds ratio
* Relative risk of harm
* Relative risk of benefit

* No similar recommendations for categorical, continuous
or time to event outcome

* Should choose measure of effect to minimise
differences between trials



IWQIG (methods V4)
Institute for Quality and Efficiency in Health Care

Routine use of these methods is not advisable

In certain situations NMA can be considered
* Lower certainty of results

Only accepts adjusted indirect comparisons
* Bucher, MTC

Assumption of consistency is critical

Full description of the model and unclear issues



Systematic review is a pre-
requisite

Only combine comparable
studies

Choice of model (fixed vs
random) based on
characteristics of studies

Investigate potential sources of
bias

Apply range of sensitivity
analyses, e.g. outliers

Direct evidence preferred

Evaluate direct and indirect
evidence separately

10.

11.

12.

13.

Recommendations by EUnetHTA on
direct and indirect comparisons

Use methods that maintain
randomisation

Choice of method relies on
network of evidence

Only conduct analyses if data
are homogeneous and
consistent

Explicitly state the assumptions
made

Justify choice of priors for
Bayesian methods

Aim for most parsimonious
model

EUnetHTA guideline comparators and comparisons: direct and indirect comparisons. EUnetHTA website. Feb 2013 8



Review of national guidelines - bias
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Review of national guidelines - conduct

of indirect comparisons

Recommended Scales for Data

Include in Indirect Comparison
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Summary from HTA agency
methodology guidelines

* NMAs should only be conducted when RCTs don't exist
* Less weight is given to a NMA compared to RCTs
* Observational data should not be used in a NMA

* Most note that a NMA has relatively low power to detect
Important differences

« All HTA bodies comment on the underlying assumption
that a NMA is only valid if the contributing RCTs are
similar

11



NMA ‘Best Practices’

Neil Hawkins, PhD, CStat
Vice President, Health Economics, Icon PLC
Honorary Professor, (Health Economics and Health Technology Assessment), University of Glasgow
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Methodological problems in the use of indirect comparisons
for evaluating healthcare interventions: survey of published

systematic reviews

Fujian Song, reader in research synthesis,’ Yoon K Loke, senior lecturer in clinical pharmacology,’
Tanya Walsh, lecturer in dental statistics,” Anne-Marie Glenny, lecturer in evidence based oral care,?
Alison ) Eastwood, senior research fellow,? Douglas G Altman, professor and director*

ABSTRACT

Objective To investigate basic assumptions and other
methodological problems in the application of indirect
comparison in systematic reviews of competing
healthcare interventions.

Design Survey of published systematic reviews.
Inclusion criteria Systematic reviews published between
2000 and 2007 in which an indirect approach had been
explicitly used.

Data extraction |dentified reviews were assessed for
comprehensiveness of the literature search, method for
indirect comparison, and whether assumptions about
similarity and consistency were explicitly mentioned.

and technology. For many clinical indications clini-
cians may have to choose among several competing
interventions. In this era of evidence based decision
making, relative effectiveness and cost effectiveness
of different interventions need to be objectively and
accurately assessed in clinical studies. It has been
accepted generally that well designed and implemen-
ted head to head randomised controlled trials provide
the most rigorous and valid research evidence on the
relative effects of different interventions.! Evidence
from head to head comparison trials is often limited
or unavailable, however, and indirect comparison
may therefore be necessary.”’
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Indirect Comparisons: A Review of Reporting and
Methodological Quality

Sarah Donegan®, Paula Williamson, Carrol Gamble, Catrin Tudur-Smith

Centre for Medical Statistics and Health Evaluation, University of Liverpool, Liverpool, United Kingdom

Abstract

Background: The indirect comparison of two interventions can be valuable in many situations. However, the quality of an
indirect comparison will depend on several factors including the chosen methodology and validity of underlying
assumptions. Published indirect comparisons are increasingly more common in the medical literature, but as yet, there are
no published recommendations of how they should be reported. Our aim is to systematically review the quality of
published indirect comparisons to add to existing empirical data suggesting that improvements can be made when
reporting and applying indirect comparisons.

Methodology/Findings: Reviews applying statistical methods to indirectly compare the dinical effectiveness of two
interventions using randomised controlled trials were eligible. We searched (1966-2008) Database of Abstracts and Reviews
of Effects, The Cochrane library, and Medline. Full review publications were assessed for eligibility. Specific criteria to assess
quality were developed and applied. Forty-three reviews were included. Adequate methodology was used to calculate the
indirect comparison in 41 reviews. Nineteen reviews assessed the similarity assumption using sensitivity analysis, subgroup
analysis, or meta-regression. Eleven reviews compared trial-level characteristics. Twenty-four reviews assessed statistical
homogeneity. Twelve reviews investigated causes of heterogeneity. Seventeen reviews included direct and indirect
evidence for the same comparison; six reviews assessed consistency. One review combined both evidence types. Twenty-
five reviews urged caution in interpretation of results, and 24 reviews indicated when results were from indirect evidence by
stating this term with the result.

Conclusions: This review shows that the underlying assumptions are not routinely explored or reported when undertaking
indirect comparisons. We recommend, therefore, that the quality of indirect comparisons should be improved, in particular,
by assessing assumptions and reporting the assessment methods applied. We propose that the quality criteria applied in
this article may provide a basis to help review authors camry out indirect comparisons and to aid appropriate interpretation.




Methodological problems in the use of NMA

Unclear understanding of underlying assumptions
Incomplete search and inclusion of relevant studies
Use of flawed or inappropriate methods

Lack of objective and validated methods to assess or improve
trial similarity

Inadequate comparison and inappropriate combination of
direct and indirect evidence



Some NMA ‘Best’ Practice guidelines

*  NICE DSU TECHNICAL SUPPORT DOCUMENT 7: EVIDENCE
SYNTHESIS OF TREATMENT EFFICACY IN DECISION MAKING: A
REVIEWER'S CHECKLIST (7http://bit.ly/HPZS16)

« ISPOR Indirect comparisons and NMA good research practices
(http://bit.ly/1laXdapc)

- EUnetHTA: Methodological guideline for REA of pharmaceuticals: Direct
and indirect comparison (http://bit.ly/1bJJatz)

* National HTA guidelines: Australia, Belgium, Canada, England & Wales,
France, Germany, Scotland, South Africa, Spain


http://bit.ly/1aXdapc

10.

11.

12.
13.

EUnetHTA: Recommendations

A systematic literature search is a pre-requisite to conducting a direct or indirect comparison
Studies that differ substantially in one or more key characteristics should not be combined

The choice between a fixed and random effects model should be based on the characteristics of the studies being
analysed

Potential sources of bias should be investigated

Attention should be given to determining the presence of outliers or influential observations

Where sufficient good quality head-to-head studies are available, direct comparisons are preferred as the level of evidence
is high

If both direct and indirect evidence are available, they can be evaluated separately

Only adjusted methods of indirect comparison that maintain randomisation should be used

The choice of indirect comparison method relies on the network of available evidence. Preference should be given to the
most transparent method available (i.e. one should favour Bucher’'s method of adjusted indirect comparison over MTC if
the data permit its usage and the appropriate assumptions are satisfied)

An indirect comparison should only be carried out if underlying data from comparable studies are homogeneous and
consistent, otherwise the results will not be reliable

The assumptions made for indirect comparisons must be explicitly stated. Particular attention should be given to the
homogeneity, similarity and consistency assumptions. A general assumption of indirect comparisons is that the relative
effectiveness of a treatment is the same across all studies included in a meta-analysis

When Bayesian methods are applied, the choice of the prior distributions should be justified and documented

The complexity of a model is not a measure of its accuracy or utility and preference is for the most parsimonious model
whose assumptions can be justified



Enron’s accounts

Dollar amounts in millions
2000 1999 1998 1997 1996

Swummary data for unconsolidated affiliates

Revenues 15,903 11,568 8508 11,183 11,676

Net income 586 1,857 142 336 464
Current assets 5,884 3,168 2,309 3,611 2,587
Total assets 34,155 26,983 22125 8,851 8,064
Current liabilities 4,739 4,401 3,501 1,089 902
Total liabilities 20,604 15280 13,138 13,551 11,553
Owners’ equity 13,551 11,694 8,087 1,861 2,381
Equity in earnings of affiliates 87 309 97 216 215

Pro forma ratio analysis — as if consolidated

Current assets/current liabilities 1.09 0.93 0.86 151 1.42
Total liabilities/stockholders’ equity 2.98 1.84 2.21 4.19 3.93
Net profit margin 0.84% 1.73% 1.77%  1.64% 1.97%
Asset turnover 1.17 0.86 0.77 0.97 1.03
Return on assets 0.98% 1.48% 1.37%  1.60% 2.04%
Assets/stockholders’ equity 3.98 2.84 3.21 4.32 3.96
Return on stockholders’ equity 3.91% 4.20% 438%  6.89% 8.08%

Source: Enron Corp. Annual Reports

What is the link to network meta-analysis?



...like accounts, interpretation of NMAs requires
judgement (plus we should worry about off-balance sheet
items)

Accounting standards

« U.S. Generally Accepted Accounting Principles(US
GAAP): rule-based

* International Financial Reporting Standards (IFRS):
principle-based

Network meta-analysis

* What are the principles?



Perhaps?

« Should systematically identify and use relevant
evidence

« Help consumers to evaluate the usefulness of the
analysis (based on the consistency constraint )

* Report transparently (in sufficient detail to allow
replication and modification)



ldentify and use relevant evidence

» Define PICO criteria (Population, Intervention,
Comparators, Outcomes) correspond to decision
problem

* May need to extend search beyond treatments in PICO
criteria

* May include unlicensed treatments

* Need to conduct a credible and repeatable search
(PRISMA guidelines)

10



May need to extend
treatments in PICO

How Far Do You Go? E

search beyond
criteria

icient Searching for

Indirect Evidence

Neil Hawkins, PhD, MSc, David A. Scott, MA, Beth Woods, BA

Background. Indirect evidence is particularly valuable in
health care decision making when direct trial evidence
comparing relevant treatments is absent or limited. Cur-
rent approaches using a predetermined set of comparators
in the search query may fail to identify all relevant indi-
rect evidence. Purpose. To present a framework for the
efficient design of search strategies for identifying clinical
trials providing indirect evidence for a treatment compari-
son. Findings. The authors present 2 search strategies that
differ from traditional search strategies in using a series of
iterative searches to identify the set of relevant compara-
tors. In both, the comparators included in each search are
determined by the results of previous searches. For a given
number of searches, the strategies presented will find all
indirect comparisons that include a certain number of

comparators linking the treatments of interest. Methods of
estimating the value of indirect evidence via a given num-
ber of comparators linking the treatments of interest are
presented, thus allowing the burden of additional search-
ing to be traded off against the likely impact of finding
more distant comparisons. A practical illustration of the
search strategies in the context of informing a network
meta-analysis of second-line treatments for non-small cell
lung cancer is presented. Conclusions. The iterative strat-
egies presented offer a means of identifying such evidence
and allow the researcher to determine the optimal scope
of the search by estimating the value of additional indirect
evidence. Key words: evidence synthesis; indirect evi-
dence; search strategies; oncology. (Med Decis Making
2009;29:273-281)

11



Help consumers to evaluate the
usefulness of the analysis

aAB = aAC _ch

Referred to as:

eConsistency
e |Indirect and direct estimates are consistent

eExchangeability

e If treatments were exchanged between trials estimates
would be the same (allowing for random variation)

eSimilarity
e The trials are similar and comparable

eTransitivity

Ops =0, — Oy Opc =0ps =Ocg

12



Consider a single trial

13



By definition consistent on the relative risk scale...

RR
RRpsg = A RR g RR s = % =1.5

14



Also on the odds ratio scale...

O RAvsC

O RAvsB —

RBVSC

ORAVSB =3.86

2.25

=1.71
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And on the risk difference (RD) scale...

RD: +10%

RD: +20% RD: +10%

RD, . =RD,..-RD,.. RD,. =20%—-10% =+10%

16



Consider multiple trials

RR: 1.5

17



The indirect estimate of RR A vs. B...

RR
RRoes = AV%RBvsc N % =1

18



Is consistent with the direct estimate...

RR: 1.5

RR 5 = 35 =1.5

19



The indirect estimate of RD A vs. B

RD, . =RD,. . —RD,,. =40%—5% = 35%

RD: +40% RD: +5%

20



Is inconsistent with the direct estimate...

RD: +15%

RD, , =40%- 5%=+35%

RD: +40% RD: +5%

21



Consistency

Is only an assumption, not a natural law
Randomisation within trials supports internal

Comparisons across trials are observational
May depend on choice of scale

Is a ‘model’

"essentially, all models are wrong, but some are
useful” George Box

22



Need to consider heterogeneity

Heterogeneity eh!

e Expectit
* Expose it
e Examine it
e Explainit

e Embrace it

George Wells

23



Expect it!

- Differences in patients
« Differences in study designs

* Differences in treatments

Examples?

e Comparison of average treatment effect estimates

e Biased by predictive factors

* Not biased by ‘purely’ prognostic factors (on the scale used for analysis)

24



Expose it!

(. Salanti er al. / Jouwrnal of Clinical Epidemiology 62 (2008) 857—864
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Fig. 4. Distribution of the possible confounding factors: box plots for year of randomization, length of follow-up, and baseline mean caries; percentage of the

studies carried out in populations with fluoridation in the water.
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Examine it!

Table Ill. Smoking cessation: posterior means and standard deviations (sd) of the log-odds ratios calculated using all
the evidence (MTC) and when direct and indirect evidence on each node is split and posterior mean and sd of the
inconsistency estimate (calculated as direct-indirect at each iteration) with Bayesian p-value, P, measuring agreement

between direct and indirect evidence for each split node.

Treatments MTC Direct Indirect Inconsistency estimate
X Y Mean sd Mean sd Mean sd Mean sd P
A B 0.493 0.406 0.342 0.55 0.706 0.635 —0.365 0.840 0.65
A C 0.844 0.240 0.845 0.254 0.673 0.679 0.171 0.716 0.79
A D 1.106 0.442 1.360 0.829 1.108 0.539 0.253 0.983 0.81
B C 0.352 0.416 —0.052 0.702 0.519 0.503 —0.571 0.853 0.49
B D 0.613 0.488 0.676 0.698 0.511 0.684 0.165 0.966 0.85
C D 0.261 0.419 —0.085 0.479 1.708 0.893 —1.793 1.009 0.07

Statist. Med. 2010, 29 932-944
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INTERVENTIONAL CARDIOLOGY

Assessing the effectiveness of primary angioplasty compared
with thrombolysis and its relationship to time delay: a
Bayesian evidence synthesis

Christian Asseburg, Yolanda Bravo Vergel, Stephen Palmer, Elisabeth Fenwick, Mark de Belder,
Keith R Abrams, Mark Sculpher
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3 February 2007

Heart 200793:1244-1250. doi: 10.1136/het. 2006093336
Background: Meta-analyses of trials have shown greater benefits from angioplasty than thrombolysis after an
acute myocardial infarction, but the time delay in initiating angioplasty needs to be considered.
Obijective: To extend earlier melo-analyses by considering 1- and é-month ouicome data for both forms of
reperfusion. To use Bayesion statistical methods to quantify the uncertainty associated with the esfimated
relationships.
Methods: i systematic review and meta-analysis published in 2003 was updated. Data on key dinical
outcomes and the difference between time-to-badlloon and time-lo-needle were independently extracted by
two researchers. Bayesian statisticnl methods were used to synthesise evidence despite differences between
reported follow-up times and outcomes. Outcomes are presented as absolute probabilities of specific events
and odds ratios (ORs; with 95% credible intervals (Crl)) as a fundtion of the additional time delay associated
with angioplasty.
Results: 22 studies were included in the meto analysis, with 3760 and 3758 patients randomised to primary
angioplasty and thrombolysis, respectively. The mean (SE) angioplasty-relaked time delay (over and above
time to thrombolysis) was 54.3 (2.2) minutes. For this delay, mean event probabilities were lower for primary
angioplasty for all outcomes. Mortdlity within 1 month was 4.5% after angioplasty and 6.4% affer
thrombolysis (OR=0.68 (95% Cr 0.46 to 1.01)). For non-fakal reinfordion, OR=0.32 (95% Cd 0.20 to
0.51); for non-fatal stroke OR=0.24 (95% Crl 0.11 to 0.50). For dll outcomes, the benefit of angioplasty
decreased with longer delay from initiation.
Conclusions: The benefit of primary angioplasty, over thrombolysis, depends an the former’s additional time
delay. For delays of 30-90 minutes, angioplasty is superior for 1-month fatal and non-fatal outcomes. For
delays of around 90 minutes thrombolysis may be the preferred option as assessed by &-month moriolity;
there is considerable uncertainty for longer time delays.
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Explain it!

02~ l-manth mertality 0.2~ é-manth mariality
o @
5 §
% 0.|—° @ £ ok _—
0 o ‘T‘\-\\_‘_
P e e Sl P ——
a3 00 £ oo
_E . : o ‘e
e
o o
2 ot £
3 3
= 2
o2 1 1 l l l ] -2 l l | | |
(1] 20 40 &0 80 100 120 ] 20 40 &0 BO 100 120
PChrelated time delay PChrelated time delay
02~ T-month reinfarction 02 - &-month reinfarction
o ©
L -
£ 0l o B 0.1 .
= * = e
k- o
: el p O
% 00 - E 0.0
& =
A R
3 3
Ed =
02 | | | ] ] | 0.2 | | | | 1 |
4] 20 40 &0 80 100 120 "o 20 40 &0 BOD 700 1R
PChrelated time delay PChrelated time delay
0.2 T-manth nondatal sirokes 0.2 &menth nonfotal strokes
g g
$ 5
£ 0= :E o1
5 S
= ’ 2z *
T po Pt i) 3 00
g e ¥
& 5
E
s _% FAs
# g
<
o2 Loy 2 Loy
0 20 40 &0 80 100 120 “o0 20 40 &0 B0 100 120

PChrelated fime delay PChelated time delay

BT O3 .o

L -
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Heart 200793:12368-1243. doi: 10.1136/hrt.2006.111 401

Objective: To assess the cost effectiveness of primary angioplasty, compared with medical management with
thrombolytic drugs, to achieve reperfusion after acute myoacardial infarction (AMI) from the perspecdtive of the
UK MHS.

Design: Bayesian evidence synthesis and decision analytic model.

Methods: A systematic review wos conducted and Bayesian statistical methods used to synthesise evidence
from 22 randomised control trials. Resource utilisation was based on UK regisiry data, published literature
and national dotobases, with unit costs taken from routine MHS sources and published literature.

Main outcome measure: Costs from a health service perspedtive and outcomes measured as quality-adjusied
life years (QALYs).

Results: For the base case, the incremenial cost-effectiveness ratio of primary angioplasty was £9241 for each
additional QALY, with a probability of being cost effedive of 0.90 for a cost-effectivenass threshold of £20 000.
Results were sensitive to varictions in the additional time required 1o initiate treatment with primary angioplasty
Conclusions: Primary angioplasty is cost effective for the rectment of AMI on the basis of resl'lnm)
effectiveness values used in the NHS and subject to a delay of up to about BO minutes. These findings are
mainly exploined by the superior mortality benefit and the prevention of non-fatal outcomes associated with
primary angioplasty for delays of up to this length.
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Embrace it!

Table 3 Cost-effectiveness results

Probability of being cost efective for
threshokd

+

Mean costs ICER
Time delay Strategy ] Mean QALYs (5 £10 00D £20 000 £30 000
Base-cose anabysis
Average dl!luy' |54 wmin] mﬂlﬂ I:‘:k‘ll}l' 12 F&0 F.12 o241 0.55 0,90 0.95
10 080 & 83 - 0.45 010 0,05
Time delays of:
20 Minutes mﬂ.ﬂ q:lu!}r 12 BA) 7.1 & B850 082 0.8 0.5
10 080 & 83 = 018 002 0.01
A0 Minytes rﬂdﬂlﬂ l:‘:hl}l' 12 750 709 10 24% 0.43 083 0.9
10 080 & 83 - 055 017 0.0
0 Minudes rﬂdﬂlg q:h!}f 12 470 & 57 &4 750 0113 0.34 .45
10 080 &.83 - 0875 0,64 .55
Differential length of haspitl stey*
Averoge delay (54 min) Frimary angioplasy 12 030 7.12 5 448 0.82 0.95 0.97
“'I'l:lﬂ:d}uil 10 450 & 83 - 018 005 0.03
20 Minutes IPrimary ang l:‘:hl}l' 12 085 7.2 4 087 0.%5 059 0.9
“'I'l:l'l'hd}u-i! 10 450 & 83 = 0.05 0.01 0.01
&0 Minutes Prirmary u‘lglq:h!}r 12 020 709 4038 075 0.2 IR
ﬂwm'hdph 10 450 & 83 = 025 0.0 0.01
0 Minutes PPrirvscary ﬂ'lglq:k‘ll}l' 11 240 & JF ar 250 032 047 .52
“'I'l:l'l'hd}u-i: 10 450 &.83 - 0.48 0.53 0,48
KCER, incremental costeffecfivensss rafia; G3ALYs, quality-odjuled like year

*Using an esfimate of 5.8 days (5E 1.4 for primary angioplasty and 12,1 &]}l‘!‘E 2.9) tor thrambaolysis (Morgon K, personal communicafion, 2005).
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‘Studies that differ substantially in one or more key
characteristics (e.g. participants, interventions, outcomes
measured) should not be combined’

Discuss?
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Adjusted indirect comparison may be less biased than direct comparison
. . . . . *
for evaluating new pharmaceutical interventions
F. Song™™*, I. Harvey®, R. Lilford"

“School af Medicine, Health Policy and Practice, University of East Anglia, Noerwich, Norfolk NR4 711, UK
e hanenl of Allied Health Professions, University of East Anglia, Nomwich, NRS 7T UK
cﬂe;mrr]‘mem af Pubdic Health and Epidemiology, University of Birmingham, Birmingham, 815 2TT, UK
Acceptad 5 June 20007

Abstract

Ohjective: To investigate discrepancies between direet companson and adjusted indireet comparison in meta-analyses of new versus
conventional phammaceutical intervenbons.

Study Design and Setling: Results of direct companson were compared with results of adjusted indirect companson in three meta-
analyses of new versus conventional drugs. The three case studies are (1) bupropion versus nicotine replacement therapy for smoking ces-
sation, (2) nspendone versus haloperidol for schizophrenia, and (3) fluoxetme versus imipramme for depressive disorders.

Results: In all the three cases, effects of new drugs estimated by head-to-head trials tend to be greater than that by adjusted indirect
comparisons. The observed discrepancies could not be satisfactonly explained by the play of chance or by bias and heterogeneity in ad-
justed indirect comparison. This observation, along with analysis of possible systemabe bas in the direct compansons, suggested that the
indireet method might have produced less biased results. Simulations found that adjusted indirect comparison may counterbalance bias un-
der certam circumstances.
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Research Article

Received 15 December 2009, Accepted 26 May 2010 Published online 4 August 2010 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.4001

Evaluating novel agent effects
in multiple-treatments meta-regression

Georgia Salanti,**' Sofia Dias,” Nicky J. Welton,” A. E. Ades,"
Vassilis Golfinopoulos, Maria Kyrgiou,® Davide Mauri*¢ and
John P. A. Toannidis®"-2

Multiple-treatments meta-analyses are increasingly used to evaluate the relative effectiveness of several competing regimens.
In some fields which evolve with the continuous introduction of new agents over time, it is possible that in trials comparing older
with newer regimens the effectiveness of the latter is exaggerated. Optimism bias, conflicts of interest and other forces may be
responsible for this exaggeration, but its magnitude and impact, if any, needs to be formally assessed in each case. Whereas
such novelty bias is not identifiable in a pair-wise meta-analysis, it is possible to explore it in a network of trials involving
several treatments. To evaluate the hypothesis of novel agent effects and adjust for them, we developed a multiple-treatments
meta-regression model fitted within a Bayesian framework. When there are several multiple-treatments meta-analyses for diverse
conditions within the same field/specialty with similar agents involved, one may consider either different novel agent effects
in each meta-analysis or may consider the effects to be exchangeable across the different conditions and outcomes. As an
application, we evaluate the impact of modelling and adjusting for novel agent effects for chemotherapy and other non-hormonal
systemic treatments for three malignancies. We present the results and the impact of different model assumptions to the relative
ranking of the various regimens in each network. We established that multiple-treatments meta-regression is a good method for
examining whether novel agent effects are present and estimation of their magnitude in the three worked examples suggests an
exaggeration of the hazard ratio by 6 per cent (2—11 per cent). Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: network meta-analysis; novelty bias; optimism bias; mixed-treatment comparison

33
|



SCIENCE

ELSEVIER

DIRECT?®

journal homepage: www.elsevier.com/locate/jval @

Consistency between Direct and Indirect Trial Evidence: Is Direct

Evidence Always More Reliable?

Jason Madan, MA, MSc, PhD*, Matt D. Stevenson, BSc, PhD, Katy L. Cooper, BSc, PhD, A. E. Ades, PhD,
Sophie Whyte, BSc, MMath, PhD, Ron Akehurst, BSc (Econ), Hon MFPH

University of Bristol, Bristol, UK

ABSTRACT

Objectives: To present a case study involving the reduction in inci-
dence of febrile neutropenia (FN) after chemotherapy with granulocyte
colony-stimulating factors (G-CSFs), illustrating difficulties that may
arise when following the common preference for direct evidence over
indirect evidence. Methods: Evidence of the efficacy of treatinents was
identified from two previous systematic reviews. We used Bayesian
evidence synthesis to estimate relative treatment effects based on di-
rect evidence, indirect evidence, and both pooled together. We checked
for inconsistency between direct and indirect evidence and explored
the role of one specific trial using cross-validation. A subsequent re-
view identified further studies not available at the time of the original
analysis. We repeated the analyses on the enlarged evidence base.
Results: We found substantial inconsistency in the original evidence
base. The median odds ratio of FN for primary pegfilgrastim versus no
primary G-CSF was 0.06 (95% credible interval: 0.02-0.19) based on di-
rect evidence, but 0.27 (95% credible interval: 0.13-0.53) based on indi-

rect evidence (P value for consistency hypothesis 0.027). The additional
trials were consistent with the earlier indirect, rather than the direct,
evidence, and there was no inconsistency between direct and indirect
estimates in the updated evidence. The earlier inconsistency was due
to one trial comparing primary pegfilgrastim with no primary G-CSF.
Predictive cross-validation showed that this study was inconsistent
with the evidence as a whole and with other trials making this
comparison. Conclusions: Both the Cochrane Handbook and the NICE
Methods Guide express a preference for direct evidence. A more robust
strategy, which is in line with the accepted principles of evidence syn-
thesis, would be to combine all relevant and appropriate information,
whether direct or indirect.

Keywords: Bayesian methods, febrile neutropenia, granulocyte colony-
stimulating factors, methodology, mixed treatment comparison

Copyright @ 2011, International Society for Pharmacoeconomics and
Outcomes Research (ISPOR). Published by Elsevier Inc.
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Received 10 August 2011,  Revised 1 February 2012,  Accepted 17 February 2012 Published online 1 June 2012 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/jrsm.57

Using network meta-analysis to
evaluate the existence of small-study
effects in a network of interventions®

Anna Chaimani and Georgia Salanti*"

Suggested methods for exploring the presence of small-study effects in a meta-analysis and the possibility
of publication bias are associated with important limitations. When a meta-analysis comprises only
a few studies, funnel plots are difficult to interpret, and regression-based approaches to test and account
for small-study effects have low power. Assuming that the cause of funnel plot asymmetry is likely to
affect an entire research field rather than only a particular comparison of interventions, we suggest
that network meta-regression is employed to account for small-study effects in a set of related meta-
analyses. We present several possible models for the direction and distribution of small-study effects
and we describe the methods by re-analysing two published networks. Copyright © 2012 John Wiley &
Sons, Ltd.

Keywords: funnel plot; publication bias; sponsorship bias; optimism bias; selective reporting bias
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‘Where sufficient good quality head-to-head studies are
available, direct comparisons are preferred as the level of
evidence is high’

Discuss?
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Transparent Reporting

Original Reseanch
Jenarrmll off Haalh Sarvic w Fesmash
Feliey
Presentational approaches used in the UK ﬂ.w
for reporting evidence synthesis using ook riaFrm
- . - Do 0D T S5 961 BT
indirect and mixed treatment |r-1-m£n-m

comparisons

Sze Huey Tan', Sylwia Bujkiewicz®, Alexander Sutton®,
Pascale Dequen® and Nicola Cooper®

Abstract

Objectives: To esmblish current guidsnee and pracdee in UK on presentdon of indirect comparison and miboed
Lren et comparteon analyses: o provide recommendstions o improve indirect comparson/mixed tresmment com-
parison reporting and o identify research priorites for improved presentation.

Methods: Existng instinmional guidance for conductng indirect comparison/mixed mresrment comparison alongside
current practice in halth ednology ssecement was reviewed Reports published in UK by the Health Technology
Asgessment programme since 997, which utlized indirect comparonmixed rement comparison methods
were reviewed with respect o the presentatdon of stwdy dsta, saristesl models and results. Recommen datons for
presentaton were developed.

Results: Guidance extors thar provide the dersils necessary w condwet a successfil indirecs comparison/mboed treat-
ment comparison analysis but recommendations on presenmton are limited. OF 205 halth echnology ssessment
repors that contsined evidence synthesis for efectiveness, 19 used indirect comparisonimiyed resrment comparison
methods. These reports utllized numenous presentatonal formats from which the following key components were
identfisd: network mblefdisgram for presenting dars; model description to allow reprodidbiliy; and mbles, forest
plots, matri mbles and summary forest plots for presenting a2 range of resils. Recommen dations were developed to
ensure that reportng & esxplicit, transparent and reprodudble. Appreaches mest understndable by non- techind cal
decision makers, and aress where future resesrch is required, are outlined.

Conclusions: There is no stndard presentmtonal style wsed in UK for reporting indirect comparison/mixed treatment
comparison, and the uwse of graphical tools is mited. Sandardizstion of reporting and innovation in graphical represen-
adon of indirect compar] sonimbeed tresmment comparison resuls is reguired.

Keywords
indirect treatment comp arisons, mbed restment CoMpan sons, reporting
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Recommendations

* Clearly identify studies

* Report treatments included in each study
* Report data / effect sizes for each study
* Describe statistical model

« Supply code and data

* Report treatment effects compared to reference
treatment

* Report pairwise comparison of all treatments
* Report probability best / ranking of treatments
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GASTROENTEROLOGY 2010;139:1218-1229

Tenofovir and Entecavir Are the Most Effective Antiviral Agents for
Chronic Hepatitis B: A Systematic Review and Bayesian Meta-analyses

GLORIA WOO,** GEORGE TOMLINSON,**5 YASUNORI NISHIKAWA,* MATTHEW KOWGIER,* MORRIS SHERMAN,*$
DAVID K. H. WONG,*$ BA PHAM,** WENDY J. UNGAR,**! THOMAS R. EINARSON,** E. JENNY HEATHCOTE,*$ and
MURRAY KRAHN**&

*Toronto Health Economics and Technology Assessment Collaborative, *Dapartments of Medicine and Health Policy, Management and Evaluation, and Faculty of

Pharmacy, University of Toronto, Toronto; §Universr’ty Health Network, Toronto General Research Institute and Clinical Studies Resource Centre Toranto Westarm
Research Institute, Toronto; "Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
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Beware disconnected networks

ETV+TDE
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Also beware zero event counts

Neg HBV
Lai 2006 (n=313,325) —225 293
Hou 2008 (n=22,20) — 17 17
Lai 2007 (n=224,222) — 160 196
Marcellin 2004 (n=179,181,177) —| 188 112
Haditannis 2003 (n=123,61) — 63 0
Marcellin 2008 (n=125,250) — 79 233
Lok 2012 (n=56,59) —] 5155
Piccolo 2009 (n=30,30) — 20 11
Kaymakoglu 2007 (n=19,29) ] 5 7
Papadopoulos 2009 (n=35,88) — 24 73
[ I I I I I I I I |
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Simultaneous comparison of multiple treatments:
combining direct and indirect evidence

Deborah M Caldwell, A E Ades, ] P T Higgins

How can policy makers dedde which of five treatments is the best? Standard meta-analysis provides

little help but evidence based decisions are possible

Several possible treatments are often available to treat
patients with the same condition. Decisions about opti-
mal care, and the dinical practice guidelines that
inform these decisions, rely on evidence based evalua-
tion of the different treatment options.” * Systematic
reviews and meta-analyses of randomised controlled
trials are the main sources of evidence. However, most
svstematic reviews focus on pair-wise, direct compari-
sons of reatments (often with the comparator being a
placebo or control group), which can make it difficult
to determine the best reatment In the absence of a
collection of large, high quality, randomised trials com-
paring all eligible reatments (which is invariably the
situation), we have to rely on indirect comparisons of
multiple treatments. For example, an indirect estimate
of the benefit of A over B can be obtained by compar-
ing trials of A » C with trials of B v C,* even though
indirect comparisons produce relatively imprecise esti-
mates® We describe comparisons of three or more
treatments, based on pair-wise or mult-arm compara-
tive studies, as a multiple treatment comparison
evidence structure.

The need to combine direct and indirect
evidence

Concerns have been expressed over the use of indirect
comparisons of treatments.” * The Cochrane Collabo-
rations guidance to authors states that indirect
comparisons are not randomised, but are “observa-
tional studies across irials, and may suffer the biases of
observational studies, for example confounding™
Some investigators believe that indirect comparisons
may svstematically overestimate the effects of treat-
ments® When both indirect and direct comparisons
are available, it has been recommended that the two
approaches be considered separately and that direct

BM] VOLLUME 331 15 OCTOBER 2005 benj.oom

Angioplasty balloon davice used to unblock and widan arierias

comparisons should take precedence as a hasis for
forming conclusions®’

Ditficulties arise, however, if the direct evidence is
inconclusive but the indirect evidence, either alone or
in combination with the direct evidence, is not
Furthermore, this approach becomes increasingly

impractical as the number of treatments increases. If

five treatments have been compared with each other,

! Further detaits of tha method are an bmfcom
+
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Probability best —what is the problem?

Table 3 Percentage mortality at 35 days and the probability that each treatment is best
(lowest mortality) in multiple treatment comparison analysis*

Fixed affect modal Random effects model
35 day Probability 35 day Probahility
Mortality % best Mariality % best
Strepiokinass 6.7 | 6.8 0
Ahaplasa 6.7 | b.5 0,003
Accalerated abeplasa 5.8 | 5.8 0.004
Strepiokinass + alteplass .5 | 6.6 0.002
Hateplase E.1 I 6.0 0.
Tanecieplasa 5.8 0.004 5.8 0.03
Percutaneous transluminal coronary 4.4 0.005 4.3 09s

angiop Lasty

*Absolute mortality is based on the awerage mortality with streptofinass in the 12 randomised controdied
triaks that included it (see bmjcom for further detaiks).
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No Study Left Behind: A Network Meta-Analysis in
Non-Small-Cell Lung Cancer Demonstrating the Importance

of Considering All Relevant Data

Neil Hawkins, PhD, MSc,! David A. Scott, MA,' Beth S. Woods, MSc,' Nicholas Thatcher, PhD, MD?
'Oxford Outcomes Ltd., Oxford, UK; Department of Medical Oncology, Christie Hospital NHS Foundation Trust, Manchester, UK

ABSTRACT

Objective: To demonstrate the importance of considering all relevant indi-
rect dara in a nerwork meta-analysis of treatments for non—small-cell lung
cancer (NSCLC).

Methods: A recent National Institute for Health and Clinical Excellence
appraisal focussed on the indirect comparison of docetaxel with erlotinib
in second-line treatment of NSCLC based on trials including a common
comparator. We compared the results of this analysis to a network meta-
analysis including other trials that formed a network of evidence. We also
examined the importance of allowing for the correlations between the
estimated treatment effects that can arise when analysing such networks.
Results: The analysis of the restricted network including only trials of
docetaxel and erlotinib linked via the common placebo comparator pro-
duced an estimated mean hazard ratio (HR) for erlotinib compared with

docetaxel of 1.55 (95% confidence interval [CI] 0.72-2.97). In contrast,
the nerwork meta-analysis produced an estimated HR for erlotinib com-
pared with docetaxel of 0.83 (95% CI 0.65-1.06). Analyzing the wider
network improved the precision of estimated treatment effects, altered
their rankings and also allowed further treatments to be compared. Some
of the estimated treatment effects from the wider network were highly
correlated.

Conclusions: This empirical example shows the importance of consider-
ing all potentially relevant data when comparing treatments. Care should
therefore be taken to consider all relevant information, including correla-
tions induced by the network of trial data, when comparing treatments.
Keywords: indirect comparison, mixed treatment comparisons, network
meta-analysis, non—small-cell lung cancer.
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Need to show all rankings

Ranking 1 2 3 4 5
Most effective Least effective

Treatment
Erlotinib 0.85 010 0.04 0.02 0.00
Pemetrexed 012 0.39 0.18 0.23 0.08
Docetaxel 0.03 0.34 0.47 0.14 0.01
Gefitinib 0.00 016 0.30 0.52 0.01
Placebo 0.00 0.00 0.01 0.09 0.90

Figure 4 Network metz-analysis results displayed as probabilicy of treatment
occupying different rankings.

Does not allow for structural uncertainty (‘best’ case estimate)
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Why not use ‘forest’ plot

Treatment
Pemetrexed — —_——
Gefitinib -8~
Erotinib — —e—
Docetaxel — —
®
Placebo — ]
| ?I |
0.25 1 2
Mora effective Less affective

Hazard ratio (log scale)

Mean HR (95% CI)

0.85 (0.65 to 1.08)

0.88 (0.78 to 0.99)

0.71 (0.58 to 0.85)
0.71 (0.58 1o 0.85) * Limited network

0.85 (0.72 to 1.00)
0.51 (0.24 to 0.96) * Limited network

1.00 (1.00 to 1.00)
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Because of correlations in effect estimates
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Which arise from the network
structure

r: 1.02 (0.91to 1.14)

r: 0.99 (0.82to 1.2)

r: 0.89 (0.79 t01.01)

r: 0.7(0.58:0.85)

Compared With

>
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Need to report all pairwise comparisons

Placebo Erlotinib Pemetrexed Docetaxel Gefetinib
Placebo 1.43(1.18:1.72)|1.2 (0.93:1.53) [1.18 (1:1.39) [1.14 (1.01:1.29)
Erlotinib  |0.71 ( 0.58:0.85)|- 0.84 (0.61:1.14)|0.83 (0.64:1.06 )|0.81 ( 0.64:1)
Pemetrexed|0.85 ( 0.66:1.08 )|1.22 ( 0.88:1.65 )|- 1.00 (0.82:1.2) |0.97 (0.77:1.2)
Docetaxel (0.85(0.72:1) |1.22(0.94:1.56)|1.01 ( 0.83:1.22)|- 0.97 (0.86:1.08)
Gefetinib  [0.88 (0.78:0.99)[1.26 (1:1.57) |1.05(0.83:1.3) |1.03 (0.92:1.16 )|

Figures are row treatments compared with column treatments
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Some alternative presentations of uncertainty

Journal of
Clinical
Epidemiology

ELEVI Journal of Clinical Epidemiology m (2010) m
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Graphical methods and numerical summaries for presenting results
from multiple-treatment meta-analysis: an overview and tutorial

Georgia Salanti®*, A.E. Ades®, John P.A. Toannidis®®¢

2Department of Hygiene and Epidemiology, University of loannina School of Medicine, loannina, Greece
"Department of Community Based Medicine, University of Bristol, Bristol, UK
“Department gf Medicine, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center and Tufts University School of Medicine,
Boston, MA, USA
Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA

Accepted 31 March 2010

Abstract

Objective: To present some simple graphical and quantitative ways to assist interpretation and improve presentation of results from
multiple-treatment meta-analysis (MTM).

Study Design and Setting: We reanalyze a published network of trials comparing various antiplatelet interventions regarding the in-
cidence of serious vascular events using Bayesian approaches for random effects MTM, and we explore the advantages and drawbacks of
various traditional and new forms of quantitative displays and graphical presentations of results.

Results: We present the results under various forms, conventionally based on the mean of the distribution of the effect sizes; based on
predictions; based on ranking probabilities; and finally, based on probabilities to be within an acceptable range from a reference. We show
how to obtain and present results on ranking of all treatments and how to appraise the overall ranks.

Conclusions: Bayesian methodology offers a multitude of ways to present results from MTM models, as it enables a natural and easy
estimation of all measures based on probabilities, ranks, or predictions. © 2010 Elsevier Inc. All rights reserved.

Keywords: Predictive intervals; Posterior probabilities: Ranking; Network meta-analysis; Mixed-treatment comparison; Bayesian meta-analysis
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Probability

Probability

1.0 1

0.6

04

0.2

0.00

1.0

0.8

0.6 1

04

0.2 -

0.0 -

1

2 3 4
Aspirin + Dipyridamole

2 3 4
Placebo

1 2 3 4 5
Thienopyridines + Aspirin

1 2 3 4 5
Thienopyridines

—
(=]
(5]
=
L

Aspirin

Fig. 3. Rankograms for the five antiplatelet regimens. On the horizontal axis are the five possible ranks and on the vertical axis the probability of a treatment

to achieve each rank.
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Table 3
Ranking of competing antiplatelet treatments

Median rank Probability to
SUCRA (95% credible be no worse

Treatment (%) nterval ) than 1.1-fold
Aspirin+dipyridamole 94 1(1,2) Reference
Thienopyndines+aspirin =~ 74 21(1,3) 51
Thienopyridines 52 3(2,4) 18

Aspirin 30 4(3, 4) 2

Placebo 0 51(5,5) 0

SUCRA values, median ranks (with 95% credible intervals), and prob-
ability for each treatment to increase the odds of the outcome no more than

10% compared with the best option.
Abbreviation: SUCRA, surface under the cumulative ranking curve.
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Finally: from the ‘Professional Meta-Analyst’

Three aims of meta-analysis:
15t to obtain increased power

2"d to obtain the best risk estimate from many, often
conflicting or even bewildering, studies. In its best
form, it is an attempt to clarify some of the
heterogeneity between studies by subgroup
analysis.

3'd to answer a question which the original studies
were not aimed at

Rosendall 1994. J Clin Epidemiol Vol. 47. No. 12,p p. 1325-1326 -



Is exchangeability implicit in clinical decision-
making?

Exchangeability
RCT: A vs Placebo: § ¢ <« > RCT: B vs Placebo: { %

Future Patient: %

24



CONCLUSIONS & WRAP-UP



Conclusions

 NMA are a key component of drug development plans
and support defining product “value”

* NMA enable indirect comparisons to be made with other
therapies used in clinical practice but not compared in
head to head randomized controlled trials

* NMA are observational with strong assumptions and
need to be interpreted with caution with key limitations
and biases fully described

* NMA require cross-functional engagement and
alignment between clinicians, statisticians, and health
economists



Recommendations

Ensure global product development plans include NMA
activities

Plan to conduct NMAs during phase 2/3 to understand
evolving clinical evidence

Educate the fundamentals of NMASs to cross-functional
partners

Statisticians are responsible for conducting NMAs



Statisticians play an important role in
NMAS

- Statisticians bring strategic contributions to product
teams in planning NMAs

 Statisticians can plan the detailed analyses required for
NMAS

- Statisticians have the technical expertise and tools to
conduct extensive and robust NMAs

 Statisticians can present and appropriately interpret the
results of NMAs



| essons learned from case studies

Early team input and buy in is essential

Obtain draft data and get analysis programs in place off
critical path

Perform validation of data extraction from systematic
review

May require a large number of analyses
« # endpoints x # treatments x # analysis sets

Automate indirect (and mixed treatment) comparisons
within SAS v9.2 (9.3)

 use WINBUGS as a validation tool
Publication planning
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